cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167589 The third column of the ED4 array A167584.

Original entry on oeis.org

1, 10, 93, 1020, 13269, 198990, 3383145, 64276920, 1349846505, 31046064210, 776157686325, 20956154152500, 607730434609725, 18839602224969750, 621707822126431425, 21759750056864358000, 805111392478121276625
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Crossrefs

Equals the third column of the ED4 array A167584.
Other columns are A024199 and A167588.
Cf. A007509 and A025547 (the sum((-1)^(k+n)/(2*k+1), k=0..n-1) factor), A001147.

Programs

  • Mathematica
    Table[(1/8)*(-1)^(n)*(2*n - 5)!!*((4*n^3 - 11*n) + (16*n^4 - 40*n^2 + 9)*(Sum[(-1)^(k + n)/(2*k + 1), {k, 0, n - 1}])), {n, 1, 50}] (* G. C. Greubel, Jun 17 2016 *)

Formula

a(n) = (1/8)*(-1)^n*(2*n-5)!!*((4*n^3-11*n)+(16*n^4-40*n^2+9)*(Sum_{k=0..n-1} (-1)^(k+n)/(2*k+1) ) ).
From Peter Bala, Nov 01 2016: (Start)
a(n) = 3*(2*n + 3)!! * Sum_{k = 0..n-1} (-1)^k/((2*k - 3)*(2*k - 1)*(2*k + 1)*(2*k + 3)*(2*k + 5)).
a(n) ~ Pi*2^(n - 5/2)*((n + 2)/e)^(n + 2).
E.g.f.: (6*arcsin(2*x) + 4*x*sqrt(1 - 4*x^2)*(5 - 8*x^2))/(32*(1 - 2*x)^(5/2)).
a(n) = 10*a(n) + (2*n - 7)*(2*n + 1)*a(n-2) with a(0) = 0, a(1) = 1.
The sequence b(n) := (2*n + 3)!! = (2*n + 4)!/((n + 2)!*2^(n+2)) = A001147(n+2) satisfies the same recurrence with b(0) = 3 and b(1) = 15. This leads to the continued fraction representation a(n) = 1/3*b(n)*( 1/(5 - 15/(10 - 7/(10 + 9/(10 + 33/(10 + ... + (2*n - 7)*(2*n + 1)/(10)))))) ) for n >= 2.
As n -> infinity, 3*a(n)/(A001147(n+2)) -> 9/4!*Pi/4 = 1/(5 - 15/(10 - 7/(10 + 9/(10 + 33/(10 + ... + (2*n - 7)*(2*n + 1)/(10 + ...)))))). (End)