A167623 a(n) = n^3 mod (n-th prime squared).
1, 8, 2, 15, 4, 47, 54, 151, 200, 159, 370, 359, 516, 895, 1166, 1287, 1432, 2111, 2370, 2959, 3932, 4407, 5278, 5903, 6216, 7375, 9074, 10503, 627, 1462, 13662, 15607, 17168, 662, 20674, 1054, 1355, 1734, 3541, 4142, 4839, 8566, 6545, 10686, 13507
Offset: 1
Links
- Karl-Heinz Hofmann, Table of n, a(n) for n = 1..10000 (first 1000 terms from G. C. Greubel)
Programs
-
Mathematica
(*1*) Table[PowerMod[n,3,Prime[n]^2],{n,100}] (*2*) PowerMod[ #,3,Prime[ # ]^2]&/@Range[100]
-
PARI
a(n) = lift(Mod(n, prime(n)^2)^3); \\ Michel Marcus, Jan 28 2025
-
Python
from sympy import sieve def A167623(n): return pow(n, 3, sieve[n]**2) # Karl-Heinz Hofmann, Jan 28 2025