A167625 Square array T(n,k), read by upward antidiagonals, counting isomorphism classes of k-regular multigraphs of order n, loops allowed.
1, 1, 0, 1, 1, 1, 1, 0, 2, 0, 1, 1, 3, 2, 1, 1, 0, 5, 0, 3, 0, 1, 1, 7, 8, 7, 3, 1, 1, 0, 11, 0, 20, 0, 4, 0, 1, 1, 15, 31, 56, 32, 13, 4, 1, 1, 0, 22, 0, 187, 0, 66, 0, 5, 0, 1, 1, 30, 140, 654, 727, 384, 101, 22, 5, 1, 1, 0, 42, 0, 2705, 0, 3369, 0, 181, 0, 6, 0, 1, 1, 56, 722, 12587, 42703
Offset: 1
Examples
Array begins: ============================================== n\k | 0 1 2 3 4 5 6 7 ----+----------------------------------------- 1 | 1 0 1 0 1 0 1 0 ... 2 | 1 1 2 2 3 3 4 4 ... 3 | 1 0 3 0 7 0 13 0 ... 4 | 1 1 5 8 20 32 66 101 ... 5 | 1 0 7 0 56 0 384 0 ... 6 | 1 1 11 31 187 727 3369 12782 ... 7 | 1 0 15 0 654 0 40365 0 ... 8 | 1 1 22 140 2705 42703 675368 8584767 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..378 (27 antidiagonals, first 19 antidiagonals from Jason Kimberley)
- J. S. Kimberley, Table in user subpage of wiki.
- R. C. Read, The enumeration of locally restricted graphs (I), J. London Math. Soc. 34 (1959) 417-436.
Crossrefs
Formula
T(n,k) = N\{S_n[S_k] * S_{nk/2}[S_2]\}.
Comments