cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167639 Number of peaks at even level in all Dyck paths of semilength n that have no ascents and no descents of length 1.

Original entry on oeis.org

0, 0, 1, 0, 3, 2, 12, 16, 59, 110, 325, 716, 1926, 4584, 11887, 29328, 75071, 188462, 480778, 1217876, 3107689, 7913082, 20221903, 51664040, 132259190, 338721180, 868587021, 2228677360, 5723740309, 14709001454, 37826827606, 97335031824
Offset: 0

Views

Author

Emeric Deutsch, Nov 08 2009

Keywords

Comments

a(n) = Sum_{k>=0} k*A167637(n,k).

Examples

			a(5)=2 because U(UD)DUUUDDD, UUUDDDU(UD)D, UUUDDUUDDD, and UUUUUDDDDD have 1 + 1 + 0 + 0 = 2 even-level peaks (shown between parentheses).
		

Crossrefs

Programs

  • Maple
    G := z^2/((1+z-z^2)*sqrt((1+z+z^2)*(1-3*z+z^2))): Gser := series(G, z = 0, 35): seq(coeff(Gser, z, n), n = 0 .. 32);
  • Mathematica
    CoefficientList[Series[x^2/((1+x-x^2)*Sqrt[(1+x+x^2)*(1-3*x+x^2)]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
  • PARI
    x='x+O('x^50); concat([0,0], Vec(x^2/((1+x-x^2)*sqrt((1+x+x^2)*(1-3*x+x^2))))) \\ G. C. Greubel, Feb 12 2017

Formula

G.f.: z^2/((1+z-z^2)*sqrt((1+z+z^2)*(1-3*z+z^2))).
a(n) ~ sqrt(3/sqrt(5)-1) * (3+sqrt(5))^n / (sqrt(Pi*n) * 2^(n+5/2)). - Vaclav Kotesovec, Mar 20 2014
Equivalently, a(n) ~ phi^(2*n - 1) / (4 * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021
D-finite with recurrence (-n+2)*a(n) +(n-3)*a(n-1) +2*(2*n-5)*a(n-2) +(n-5)*a(n-3) +(-3*n+11)*a(n-5) +(n-4)*a(n-6)=0. - R. J. Mathar, Jul 26 2022