A167700 Number of partitions of n into distinct odd squares.
1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
a(50) = #{49+1} = 1; a(130) = #{121+9, 81+49} = 2.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Vaclav Kotesovec, Graph - The asymptotic ratio
- Index entries for sequences related to sums of squares.
Programs
-
Haskell
a167700 = p a016754_list where p _ 0 = 1 p (q:qs) m = if m < q then 0 else p qs (m - q) + p qs m -- Reinhard Zumkeller, Mar 15 2014
-
Mathematica
nmax = 100; CoefficientList[Series[Product[1 + x^((2*k-1)^2), {k, 1, Floor[Sqrt[nmax]/2] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 18 2017 *)
Formula
a(n) = f(n,1,8) with f(x,y,z) = if x
G.f.: Product_{k>=0} (1 + x^((2*k+1)^2)). - Ilya Gutkovskiy, Jan 11 2017
a(n) ~ exp(3 * 2^(-7/3) * Pi^(1/3) * (sqrt(2)-1)^(2/3) * Zeta(3/2)^(2/3) * n^(1/3)) * (sqrt(2)-1)^(1/3) * Zeta(3/2)^(1/3) / (2^(7/6) * sqrt(3) * Pi^(1/3) * n^(5/6)). - Vaclav Kotesovec, Sep 18 2017
Comments