A167707 The non-single or nonisolated numbers. The union of non-single (or nonisolated or twin) primes and non-single (or nonisolated) nonprimes.
0, 1, 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
isA001097 := proc(n) isprime(n) and (isprime(n+2) or isprime(n-2)) ; end proc: isA164276 := proc(n) not isprime(n) and ( not isprime(n+1) or not isprime(n-1) ) ; end proc: isA167707 := proc(n) isA001097(n) or isA164276(n) ; end proc: for n from 0 to 100 do if isA167707(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Mar 18 2010
-
Mathematica
Union[Select[Range[0, 300], !PrimeQ[#] && (! PrimeQ[# - 1] || ! PrimeQ[# + 1]) & ], Select[Prime[Range[300]], PrimeQ[# - 2] || PrimeQ[# + 2] &]] (* G. C. Greubel, Jul 07 2016 *)
Formula
a(n) = n + n / log n + O(n / (log n)^2) by Brun's theorem. [Charles R Greathouse IV, Mar 15 2011]
Comments