cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167709 Numbers y such that 19*y^2 + 81 is a square.

Original entry on oeis.org

0, 1, 15, 24, 220, 351, 560, 5124, 8175, 74801, 119340, 190399, 1742145, 2779476, 25432120, 40575249, 64735100, 592324176, 945013665, 8646845999, 13795465320, 22009743601, 201388477695, 321301866624, 2939902207540, 4690417633551
Offset: 0

Views

Author

Richard Choulet, Nov 10 2009

Keywords

Examples

			a(0) = 0 because 19*0 + 81 = 9^2, a(1)=1 because 19*1 + 81 = 10^2.
		

References

  • A. H. Beiler, "Recreations in the theory of numbers": Ex. 38, page 298 (Dover Publications, Inc., New York, 1966).

Crossrefs

Programs

  • Maple
    a(0):=0:a(1):=1:a(2):=15:a(3):=24:a(4):=220:a(5):=351:a(6):=560: a(7):=5124: a(8):=8175:a(9):=74801:for n from 0 to 40 do a(n+10):=340*a(n+5)-a(n):od:seq(a(n),n=0..40);
  • Mathematica
    a[0]=0; a[1]=a[-1]=1; a[2]=a[-2]=15; a[n_] := a[n] = 170*a[n-5]+39*Sqrt[19*a[n-5]^2+81]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 19 2013 *)
    LinearRecurrence[{0, 0, 0, 0, 340, 0, 0, 0, 0, -1}, {0, 1, 15, 24,
      220, 351, 560, 5124, 8175, 74801}, 100] (* G. C. Greubel, Jun 20 2016 *)

Formula

G.f.: (z + 15*z^2 + 24*z^3 + 220*z^4 + 351*z^5 + 560*z^6 + 5124*z^7 + 8175*z^8 + 74801*z^9 - 340*z^5*(z + 15*z^2 + 24*z^3 + 220*z^4) ) / (1 - 340*z^5 + z^10).
a(n+10) = 340*a(n+5) - a(n).
a(n+5) = 170*a(n) + 39*sqrt(19*a(n)^2 + 81).
For n == 0 (mod 5): a(n) = ( 9*sqrt(19) )/38*(170 + 39*sqrt(19))^(n) + (-9*sqrt(19))/38*(170 - 39*sqrt(19))^(n); the subsequence is 0, 351, 119340, 40575249, 13795465320, 4690417633551, 1594728199942020, 542202897562653249, 184347390443102162640, ...
For n == 1 (mod 5): a(n) = (10*sqrt(19) + 19)/38*(170 + 39*sqrt(19))^(n) + (-10*sqrt(19) + 19)/38*(170 - 39*sqrt(19))^(n); the subsequence is 1, 560, 190399, 64735100, 22009743601, 7483248089240, 2544282340597999, 865048512555230420, 294113949986437744801, ...
For n == 2 (mod 5): a(n) = (66*sqrt(19) + 285)/38*(170 + 39*sqrt(19))^(n) + (-66*sqrt(19) + 285)/38*(170 - 39*sqrt(19))^(n); the subsequence is 15, 5124, 1742145, 592324176, 201388477695, 68471490092124, 23280105242844465, 7915167311077025976, 2691133605660945987375, ...
For n == 3 (mod 5): a(n) = (105*sqrt(19) + 456)/38*(170 + 39*sqrt(19))^(n) + (-105*sqrt(19) + 456)/38*(170 - 39*sqrt(19))^(n); the subsequence is 24, 8175, 2779476, 945013665, 321301866624, 109241689638495, 37141853175221676, 12628120837885731345, 4293523943027973435624, ...
For n == 4 (mod 5): a(n) = (959*sqrt(19) + 4180)/38*(170 + 39*sqrt(19))^(n) + (-959*sqrt(19) + 4180)/38*(170 - 39*sqrt(19))^(n); the subsequence is 220, 74801, 25432120, 8646845999, 2939902207540, 999558103717601, 339846815361776800, 115546917664900394399, 39285612159250772318860, ...