A167786 Triangle of z Transform coefficients from General Pascal [1,8,1} A142458 polynomials multiplied by factor 3^Floor[(2*k - 1)/3].
0, 3, 3, 6, 9, 45, 45, 27, 234, 540, 360, 27, 315, 1305, 1980, 990, 81, 1026, 6750, 18360, 20790, 8316, 243, 3807, 26379, 115830, 234630, 212058, 70686, 243, 7938, 37800, 177660, 582120, 939708, 706860, 201960, 729, 26001, 280827, 873180, 3087315
Offset: 0
Examples
{0}, {3}, {3, 6}, {9, 45, 45}, {27, 234, 540, 360}, {27, 315, 1305, 1980, 990}, {81, 1026, 6750, 18360, 20790, 8316}, {243, 3807, 26379, 115830, 234630, 212058, 70686}, {243, 7938, 37800, 177660, 582120, 939708, 706860, 201960}, {729, 26001, 280827, 873180, 3087315, 8058204, 10814958, 6967620, 1741905}, {2187, -308610, 1076490, 7334820, 17120565, 48411594, 104968710, 120570120, 67934295, 15096510}
Programs
-
Mathematica
m = 3 A[n_, 1] := 1 A[n_, n_] := 1 A[n_, k_] := (m*n - m*k + 1)A[n - 1, k - 1] + (m*k - (m - 1))A[n - 1, k] a = Table[A[n, k], {n, 10}, {k, n}] p[x_, n_] = x*Sum[a[[n, k]]*x^(k - 1), {k, 1, n}]/(x - 1) b = Table[p[x, n], {n, 0, 10}] Table[3^Floor[(2*k - 1)/3]*CoefficientList[ExpandAll[ InverseZTransform[b[[k]], x, n] /. UnitStep[ -1 + n] -> 1], n], {k, 1, Length[b]}]
Formula
m=3;
A(n,k)= (m*n - m*k + 1)A(n - 1, k - 1} + (m*k - (m - 1))A(n - 1, k)
q(n,k)=InverseZTransform[x*Sum[a[[n, k]]*x^(k - 1), {k, 1, n}]/(x - 1)^n, x, k]
out_n,k=3^Floor[(2*k - 1)/3]*coefficients(q[n,k])
Comments