cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167787 Triangle of z Transform coefficients from General Pascal [1,10,1} A142459 polynomials multiplied by factor 3^Floor[(2*k - 1)/3].

Original entry on oeis.org

0, 3, 3, 6, 9, 54, 54, 27, 324, 810, 540, 27, 432, 2322, 3780, 1890, 81, 810, 12150, 42120, 51030, 20412, 243, 3402, 27216, 272160, 697410, 673596, 224532, 243, 34020, 40824, 244944, 1786050, 3633336, 2918916, 833976, 729, 104976, 1583388, 1224720
Offset: 0

Views

Author

Roger L. Bagula, Nov 12 2009

Keywords

Comments

Row sums are:
{0, 3, 9, 117, 1701, 8451, 126603, 1898559, 9492309, 142383177, 2135743281...}

Examples

			{0},
{3},
{3, 6},
{9, 54, 54},
{27, 324, 810, 540},
{27, 432, 2322, 3780, 1890},
{81, 810, 12150, 42120, 51030, 20412},
{243, 3402, 27216, 272160, 697410, 673596, 224532},
{243, 34020, 40824, 244944, 1786050, 3633336, 2918916, 833976},
{729, 104976, 1583388, 1224720, 5664330, 32332608, 54561276, 37528920, 9382230},
{2187, -5734314, 6009876, 53905176, 31689630, 117756828, 551675124, 795613104, 478493730, 106331940}
		

Crossrefs

Programs

  • Mathematica
    m = 4; A[n_, 1] := 1; A[n_, n_] := 1
    A[n_, k_] := (m*n - m*k + 1)A[n - 1, k - 1] + (m*k - (m - 1))A[n - 1, k]
    a = Table[A[n, k], {n, 10}, {k, n}]
    p[x_, n_] = x*Sum[a[[n, k]]*x^(k - 1), {k, 1, n}]/(x - 1)
    b = Table[p[x, n], {n, 0, 10}]
    Table[3^Floor[(2*k - 1)/3]*CoefficientList[ExpandAll[ InverseZTransform[b[[k]], x, n] /. UnitStep[ -1 + n] -> 1], n], {k, 1, Length[b]}]

Formula

m=4;
A(n,k)= (m*n - m*k + 1)A(n - 1, k - 1} + (m*k - (m - 1))A(n - 1, k)
q(n,k)=InverseZTransform[x*Sum[a[[n, k]]*x^(k - 1), {k, 1, n}]/(x - 1)^n, x, k]
out_n,k=3^Floor[(2*k - 1)/3]*coefficients(q[n,k])