A167810
Number of admissible basis in the postage stamp problem for n denominations and h = 3 stamps.
Original entry on oeis.org
1, 3, 13, 86, 760, 8518, 116278, 1911198, 37063964, 835779524, 21626042510, 635611172160, 21033034941826, 777710150809009
Offset: 1
Yogy Namara (yogy.namara(AT)gmail.com), Nov 12 2009
- R. K. Guy, Unsolved Problems in Number Theory, C12.
- R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
- M. F. Challis, Two new techniques for computing extremal h-bases A_k, Comp J 36(2) (1993) 117-126
- Erich Friedman, Postage stamp problem
- W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
- S. Mossige, Algorithms for Computing the h-Range of the Postage Stamp Problem, Math. Comp. 36 (1981) 575-582
Terms a(1) to a(12) verified and new terms a(13) and a(14) added by
Herbert Kociemba, Jul 14 2010
A167811
Number of admissible basis in the postage stamp problem for n denominations and h = 4 stamps.
Original entry on oeis.org
1, 4, 26, 291, 4752, 109640, 3380466, 136053274, 6963328612, 444765731559
Offset: 1
Yogy Namara (yogy.namara(AT)gmail.com), Nov 12 2009
- R. K. Guy, Unsolved Problems in Number Theory, C12.
- R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
- M. F. Challis, Two new techniques for computing extremal h-bases A_k, Comp J 36(2) (1993) 117-126
- Erich Friedman, Postage stamp problem
- W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
- S. Mossige, Algorithms for Computing the h-Range of the Postage Stamp Problem, Math. Comp. 36 (1981) 575-582
A167812
Number of admissible basis in the postage stamp problem for n denominations and h = 5 stamps.
Original entry on oeis.org
1, 5, 45, 750, 20881, 880325, 54329413, 4727396109, 563302698378
Offset: 1
Yogy Namara (yogy.namara(AT)gmail.com), Nov 12 2009
- R. K. Guy, Unsolved Problems in Number Theory, C12.
- R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
- M. F. Challis, Two new techniques for computing extremal h-bases A_k, Comp J 36(2) (1993) 117-126
- Erich Friedman, Postage stamp problem
- W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
- S. Mossige, Algorithms for Computing the h-Range of the Postage Stamp Problem, Math. Comp. 36 (1981) 575-582
A167813
Number of admissible basis in the postage stamp problem for n denominations and h = 6 stamps.
Original entry on oeis.org
1, 6, 71, 1694, 73126, 5235791, 593539539, 102141195784
Offset: 1
Yogy Namara (yogy.namara(AT)gmail.com), Nov 12 2009
- R. K. Guy, Unsolved Problems in Number Theory, C12.
- R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
- M. F. Challis, Two new techniques for computing extremal h-bases A_k, Comp J 36(2) (1993) 117-126
- Erich Friedman, Postage stamp problem
- W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
- S. Mossige, Algorithms for Computing the h-Range of the Postage Stamp Problem, Math. Comp. 36 (1981) 575-582
A167814
Number of admissible basis in the postage stamp problem for n denominations and h = 7 stamps.
Original entry on oeis.org
1, 7, 105, 3407, 217997, 24929035, 4863045067
Offset: 1
Yogy Namara (yogy.namara(AT)gmail.com), Nov 12 2009
- R. K. Guy, Unsolved Problems in Number Theory, C12.
- R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
- M. F. Challis, Two new techniques for computing extremal h-bases A_k, Comp J 36(2) (1993) 117-126
- Erich Friedman, Postage stamp problem
- W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
- S. Mossige, Algorithms for Computing the h-Range of the Postage Stamp Problem, Math. Comp. 36 (1981) 575-582
Showing 1-5 of 5 results.
Comments