cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A166941 Product plus sum of four consecutive nonnegative numbers.

Original entry on oeis.org

6, 34, 134, 378, 862, 1706, 3054, 5074, 7958, 11922, 17206, 24074, 32814, 43738, 57182, 73506, 93094, 116354, 143718, 175642, 212606, 255114, 303694, 358898, 421302, 491506, 570134, 657834, 755278, 863162, 982206, 1113154, 1256774
Offset: 0

Views

Author

Keywords

Comments

a(n) = (n*...*(n+3))+(n+...+(n+3)), n >= 0.
All terms are even.
Binomial transform of 2*A167858.

Examples

			a(0) = 0*1*2*3+0+1+2+3 = 0+6 = 6.
a(1) = 1*2*3*4+1+2+3+4 = 24+10 = 34.
		

Crossrefs

Cf. A001477 (nonnegative integers), A167858 (3,14,36,36,12,0,0,0,...), A028387 (n+(n+1)^2), A167875, A166942, A166943.

Programs

  • Magma
    [ &*s + &+s where s is [n..n+3]: n in [0..32] ]; // Klaus Brockhaus, Nov 14 2009
  • Mathematica
    lst={};Do[p=(n+3)*(n+2)*(n+1)*n+(n+3)+(n+2)+(n+1)+n;AppendTo[lst,p],{n,0,5!}];lst

Formula

a(n) = n^4 + 6*n^3 + 11*n^2 + 10*n + 6. - Charles R Greathouse IV, Nov 02 2009, [corrected by Klaus Brockhaus, Nov 14 2009]
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 24 for n > 3; a(0)=6, a(1)=34, a(2)=134, a(3)=378. - Klaus Brockhaus, Nov 14 2009
G.f.: 2*(3 + 2*x + 12*x^2 - 6*x^3 + x^4)/(1-x)^5. - Klaus Brockhaus, Nov 14 2009

Extensions

Edited and offset corrected by Klaus Brockhaus, Nov 14 2009

A167876 A000004 preceded by 1, 3, 4, 2.

Original entry on oeis.org

1, 3, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Klaus Brockhaus, Nov 14 2009

Keywords

Comments

Inverse binomial transform of A167875.

Crossrefs

Cf. A000004 (zero sequence), A167875 (one third of product plus sum of three consecutive nonnegative integers), A166926 (1, 2, 4, 0, 0, 0, 0, ...), A130706 (1, 2, 0, 0, 0, 0, ...), A130779 (1, 1, 2, 0, 0, 0, 0, ...), A167858 (3, 14, 36, 36, 12, 0, 0, 0, ...).

Programs

  • PARI
    {concat([1, 3, 4, 2], vector(99))}

Formula

a(0) = 1, a(1) = 3, a(2) = 4, a(3) = 2, a(n) = 0 for n > 3.
G.f.: (1+x)*(1+2*x+2*x^2).

A167891 A000004 preceded by 1, 4, 2.

Original entry on oeis.org

1, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Klaus Brockhaus, Nov 14 2009

Keywords

Comments

Inverse binomial transform of A028387.

Crossrefs

Cf. A000004 (zero sequence), A028387 (n+(n+1)^2), A166926 (1, 2, 4, 0, 0, 0, 0, ...), A130706 (1, 2, 0, 0, 0, 0, ...), A130779 (1, 1, 2, 0, 0, 0, 0, ...), A167858 (3, 14, 36, 36, 12, 0, 0, 0, ...), A167876 (1, 3, 4, 2, 0, 0, 0, ...).

Programs

  • PARI
    {concat([1, 4, 2], vector(100))}

Formula

a(0) = 1, a(1) = 4, a(2) = 2, a(n) = 0 for n > 2.
G.f.: 1+4*x+2*x^2.
Showing 1-3 of 3 results.