A167860 Primes p dividing every A167859(m) from m=(p-1)/2 to m=(p-1).
7, 47, 191, 383, 439, 1151, 1399, 2351, 2879, 3119, 3511, 3559, 4127, 5087, 5431, 6911, 8887, 9127, 9791, 9887, 12391, 13151, 14407, 15551, 16607, 19543, 20399, 21031, 21319, 21839, 23039, 25391, 26399, 28087, 28463, 28711, 29287, 33223, 39551, 43103, 44879, 46271
Offset: 1
Keywords
Links
- R. J. Mathar, Table of n, a(n) for n = 1..57
Crossrefs
Programs
-
Maple
A167859 := proc(n) option remember; if n <= 1 then add( (binomial(2*k, k)/2^k)^2, k=0..n) ; 4^n*% ; else 4*(5*n^2 - 4*n + 1)*procname(n-1) - 16*(2*n - 1)^2*procname(n-2) ; %/n^2 ; end if; end proc: isA167860 := proc(p) local m ; for m from (p-1)/2 to p-1 do if modp(A167859(m),p) > 0 then return false; end if; end do: true ; end proc: A167860 := proc(n) option remember ; if n = 0 then 2; else p := nextprime(procname(n-1)) ; while not isA167860(p) do p := nextprime(p) ; end do ; return p; end if; end proc: seq(A167860(n),n=1..10) ; # R. J. Mathar, Jan 22 2025
-
PARI
is(p) = if(isprime(p)&&p%2, my(m=Mod(1, p), s=m); for(k=1, p\2, s+=(m*=(2*k-1)/k)^2); !s, 0); \\ Jinyuan Wang, Jul 24 2022
Extensions
More terms from Jinyuan Wang, Jul 24 2022
Comments