A167930 Number of partitions of n in which some but not all parts are equal.
0, 0, 0, 0, 1, 3, 4, 9, 13, 20, 29, 43, 57, 82, 110, 146, 195, 258, 334, 435, 558, 713, 910, 1150, 1446, 1814, 2268, 2815, 3491, 4308, 5301, 6501, 7954, 9692, 11795, 14295, 17301, 20876, 25148, 30200, 36218, 43322, 51741, 61650, 73354
Offset: 0
Keywords
Examples
The partitions of 6 are: 6 ....................... All parts are distinct. 5 + 1 ................... All parts are distinct. 4 + 2 ................... All parts are distinct. 4 + 1 + 1 ............... Only some parts are equal ...... (1). 3 + 3 ................... All parts are equal. 3 + 2 + 1 ............... All parts are distinct. 3 + 1 + 1 + 1 ........... Only some parts are equal ...... (2). 2 + 2 + 2 ............... All parts are equal. 2 + 2 + 1 + 1 ........... Only some parts are equal ...... (3). 2 + 1 + 1 + 1 + 1 ....... Only some parts are equal ...... (4). 1 + 1 + 1 + 1 + 1 + 1 ... All parts are equal. Then a(6) = 4. a(7) = 9 from 511 4111 331 322 3211 31111 2221 22111 211111. - _N. J. A. Sloane_, May 30 2024
Links
Crossrefs
Programs
-
Mathematica
f[lst_]:=With[{c=Split[lst]},Length[lst]>2&&Max[Length/@c]>1&&Length[c]>1]; Table[Length[ Select[ IntegerPartitions[n],f]],{n,0,50}] (* Harvey P. Dale, May 30 2024 *)
Formula
Extensions
Edited by Omar E. Pol, Nov 16 2009
More terms from Max Alekseyev, May 02 2011
Comments