cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167936 a(n) = 2^n - A108411(n).

Original entry on oeis.org

0, 1, 1, 5, 7, 23, 37, 101, 175, 431, 781, 1805, 3367, 7463, 14197, 30581, 58975, 124511, 242461, 504605, 989527, 2038103, 4017157, 8211461, 16245775, 33022991, 65514541, 132623405, 263652487, 532087943, 1059392917, 2133134741, 4251920575, 8546887871
Offset: 0

Views

Author

Paul Curtz, Nov 15 2009

Keywords

Comments

The binomial transform of (0 followed by A077917).

Crossrefs

Programs

  • Magma
    I:=[0,1,1]; [n le 3 select I[n] else 2*Self(n-1) +3*Self(n-2) -6*Self(n-3): n in [1..40]]; // G. C. Greubel, Sep 10 2023
    
  • Mathematica
    LinearRecurrence[{2,3,-6}, {0,1,1}, 50] (* G. C. Greubel, Jul 01 2016 *)
  • Python
    def A167936(n): return (1<>1) # Chai Wah Wu, Nov 14 2023
  • SageMath
    def A167936(n): return 2^n - ((n+1)%2)*3^(n//2) - (n%2)*3^((n-1)//2)
    [A167936(n) for n in range(41)] # G. C. Greubel, Sep 10 2023
    

Formula

a(n) = A167762(n+1) - A167762(n).
a(n+1) - a(n) = A167784(n).
a(n) = 2*a(n-1) + 3*a(n-2) - 6*a(n-3).
G.f.: x*(1-x)/((1-2*x)*(1-3*x^2)).
a(2n) = A005061(n), a(2n+1) = A085350(n).
a(n) - 2*a(n-1) = (-1)^(n+1)*A083658(n+1).
From G. C. Greubel, Sep 10 2023: (Start)
a(n) = (1/2)*(2^(n+1) - (1+(-1)^n)*3^(n/2) - (1-(-1)^n)*3^((n-1)/2)).
E.g.f.: exp(2*x) - cosh(sqrt(3)*x) - (1/sqrt(3))*sinh(sqrt(3)*x). (End)

Extensions

Edited and extended by R. J. Mathar, Feb 27 2010