cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168012 a(n) = sum of all divisors of all numbers k such that n^2 <= k < (n+1)^2.

Original entry on oeis.org

8, 48, 133, 302, 516, 923, 1346, 2038, 2768, 3891, 4810, 6572, 7959, 10066, 12186, 14944, 17261, 21210, 23992, 28497, 32550, 37742, 42111, 48906, 54252, 61280, 68153, 76958, 82942, 94661, 101882, 113082, 123794, 135583, 145630, 161526
Offset: 1

Views

Author

Omar E. Pol, Nov 16 2009

Keywords

Examples

			a(2) = 48 because the numbers k are 4,5,6,7 and 8 (since 2^2 <= k < 3^2) and sigma(4) + sigma(5) + sigma(6) + sigma(7) + sigma(8) = 7 + 6 + 12 + 8 + 15 = 48, where sigma(n) is the sum of divisors of n (see A000203).
		

Crossrefs

Programs

  • Mathematica
    A168012[n_]:=Sum[DivisorSigma[1,k],{k,n^2,(n+1)^2-1}];
    Array[A168012,50] (* Paolo Xausa, Oct 23 2023 *)
  • PARI
    a(n)=sum(k=n^2,(n+1)^2-1,sigma(k)) \\ Franklin T. Adams-Watters, May 14 2010
    
  • Python
    def A168012(n):
        a, b = n*(n+2),(n-1)*(n+1)
        return (sum((q:=a//k)*((s:=k<<1)+q+1)-(r:=b//k)*(s+r+1) for k in range(1,n))>>1)+5*n+3 # Chai Wah Wu, Oct 23 2023

Extensions

More terms from Franklin T. Adams-Watters, May 14 2010