cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A168011 a(n) = Sum of all numbers of divisors of all numbers < (n+1)^2.

Original entry on oeis.org

5, 20, 45, 84, 131, 198, 273, 368, 473, 602, 731, 894, 1061, 1252, 1457, 1686, 1917, 2186, 2453, 2752, 3065, 3402, 3743, 4122, 4509, 4918, 5345, 5804, 6249, 6754, 7251, 7780, 8333, 8906, 9477, 10104, 10729, 11386, 12047, 12758, 13445, 14202, 14945
Offset: 1

Views

Author

Omar E. Pol, Nov 16 2009

Keywords

Comments

Partial sums of A168010.

Examples

			a(2)=20 because the numbers < (2+1)^2 are 1,2,3,4,5,6,7 and 8. Then a(2) = d(1)+d(2)+d(3)+d(4)+d(5)+d(6)+d(7)+d(8) = 1+2+2+3+2+4+2+4 = 20, where d(n) is the number of divisor of n (see A000005).
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Plus @@ DivisorSigma[0, Range[(n + 1)^2 - 1]]; Array[f, 43] (* Robert G. Wilson v, Dec 10 2009 *)
  • Python
    def A168011(n):
        m = n*(n+2)
        return (sum(m//k for k in range(1,n+1))<<1)-n**2 # Chai Wah Wu, Oct 23 2023

Extensions

More terms from Robert G. Wilson v, Dec 10 2009

A168010 a(n) = Sum of all numbers of divisors of all numbers k such that n^2 <= k < (n+1)^2.

Original entry on oeis.org

5, 15, 25, 39, 47, 67, 75, 95, 105, 129, 129, 163, 167, 191, 205, 229, 231, 269, 267, 299, 313, 337, 341, 379, 387, 409, 427, 459, 445, 505, 497, 529, 553, 573, 571, 627, 625, 657, 661, 711, 687, 757, 743, 783, 805, 821, 831, 885, 875, 913, 929, 961, 961, 1011
Offset: 1

Views

Author

Omar E. Pol, Nov 16 2009

Keywords

Comments

A straightforward approach to calculate a(n) would require computing tau (A000005) for the 2n+1 integers between n^2 and (n+1)^2. Since Sum_{i=1..n} tau(i) can be computed by summing sqrt(n) terms, we can compute a(n) via the summation of n terms of the form 2*(floor(n*(n+2)/i)-floor((n-1)*(n+1)/i)) without the need to compute tau. Similarly for the sequence A168012. - Chai Wah Wu, Oct 24 2023

Examples

			a(2) = 15 because the numbers k are 4, 5, 6, 7 and 8 (since 2^2 <= k < 3^2) and d(4) + d(5) + d(6) + d(7) + d(8) = 3 + 2 + 4 + 2 + 4 = 15, where d(n) is the number of divisors of n (see A000005).
		

Crossrefs

Programs

  • Mathematica
    Table[Total[DivisorSigma[0,Range[n^2,(n+1)^2-1]]],{n,60}] (* Harvey P. Dale, Aug 17 2015 *)
  • PARI
    a(n)=sum(k=n^2,(n+1)^2-1,numdiv(k)) \\ Franklin T. Adams-Watters, May 14 2010
    
  • Python
    def A168010(n):
        a, b = n*(n+2),(n-1)*(n+1)
        return (sum(a//k-b//k for k in range(1,n))<<1)+5 # Chai Wah Wu, Oct 23 2023

Extensions

More terms from Franklin T. Adams-Watters, May 14 2010

A168013 a(n) = Sum of all divisors of all numbers < (n+1)^2.

Original entry on oeis.org

8, 56, 189, 491, 1007, 1930, 3276, 5314, 8082, 11973, 16783, 23355, 31314, 41380, 53566, 68510, 85771, 106981, 130973, 159470, 192020, 229762, 271873, 320779, 375031, 436311, 504464, 581422, 664364, 759025, 860907, 973989, 1097783, 1233366, 1378996, 1540522
Offset: 1

Views

Author

Omar E. Pol, Nov 16 2009

Keywords

Comments

Partial sums of A168012.

Examples

			For n=2 the a(2)=56 because the numbers < (2+1)^2 are 1,2,3,4,5,6,7 and 8. Then a(2) = sigma(1)+sigma(2)+sigma(3)+sigma(4)+sigma(5)+sigma(6)+sigma(7)+sigma(8) = 1+3+4+7+6+12+8+15 = 56, where sigma(n) is the sum of divisor of n (see A000203).
		

Crossrefs

Programs

  • Mathematica
    A168012[n_]:=Sum[DivisorSigma[1,k],{k,n^2,(n+1)^2-1}];
    Accumulate[Array[A168012,50]] (* Paolo Xausa, Oct 23 2023 *)
  • Python
    def A168013(n):
        m = n*(n+2)
        return sum((q:=m//k)*((k<<1)+q+1) for k in range(1,n+1))-n**2*(n+1)>>1 # Chai Wah Wu, Oct 23 2023

Formula

a(n) = A024916(n^2+2*n). - Jason Yuen, Oct 08 2024

Extensions

More terms from Sean A. Irvine, Dec 07 2009
Showing 1-3 of 3 results.