A168010 a(n) = Sum of all numbers of divisors of all numbers k such that n^2 <= k < (n+1)^2.
5, 15, 25, 39, 47, 67, 75, 95, 105, 129, 129, 163, 167, 191, 205, 229, 231, 269, 267, 299, 313, 337, 341, 379, 387, 409, 427, 459, 445, 505, 497, 529, 553, 573, 571, 627, 625, 657, 661, 711, 687, 757, 743, 783, 805, 821, 831, 885, 875, 913, 929, 961, 961, 1011
Offset: 1
Keywords
Examples
a(2) = 15 because the numbers k are 4, 5, 6, 7 and 8 (since 2^2 <= k < 3^2) and d(4) + d(5) + d(6) + d(7) + d(8) = 3 + 2 + 4 + 2 + 4 = 15, where d(n) is the number of divisors of n (see A000005).
Links
Programs
-
Mathematica
Table[Total[DivisorSigma[0,Range[n^2,(n+1)^2-1]]],{n,60}] (* Harvey P. Dale, Aug 17 2015 *)
-
PARI
a(n)=sum(k=n^2,(n+1)^2-1,numdiv(k)) \\ Franklin T. Adams-Watters, May 14 2010
-
Python
def A168010(n): a, b = n*(n+2),(n-1)*(n+1) return (sum(a//k-b//k for k in range(1,n))<<1)+5 # Chai Wah Wu, Oct 23 2023
Extensions
More terms from Franklin T. Adams-Watters, May 14 2010
Comments