A168016 Triangle T(n,k) read by rows in which row n list the number of partitions of n into parts divisible by k for k=n,n-1,...,1.
1, 1, 2, 1, 0, 3, 1, 0, 2, 5, 1, 0, 0, 0, 7, 1, 0, 0, 2, 3, 11, 1, 0, 0, 0, 0, 0, 15, 1, 0, 0, 0, 2, 0, 5, 22, 1, 0, 0, 0, 0, 0, 3, 0, 30, 1, 0, 0, 0, 0, 2, 0, 0, 7, 42, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, 1, 0, 0, 0, 0, 0, 2, 0, 3, 5, 11, 77, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 101
Offset: 1
Examples
Triangle begins: ============================================== .... k: 12 11 10. 9. 8. 7. 6. 5. 4. 3.. 2.. 1. ============================================== n=1 ....................................... 1, n=2 ................................... 1, 2, n=3 ............................... 1, 0, 3, n=4 ............................ 1, 0, 2, 5, n=5 ......................... 1, 0, 0, 0, 7, n=6 ...................... 1, 0, 0, 2, 3, 11, n=7 ................... 1, 0, 0, 0, 0, 0, 15, n=8 ................ 1, 0, 0, 0, 2, 0, 5, 22, n=9 ............. 1, 0, 0, 0, 0, 0, 3, 0, 30, n=10 ......... 1, 0, 0, 0, 0, 2, 0, 0, 7, 42, n=11 ...... 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, n=12 ... 1, 0, 0, 0, 0, 0, 2, 0, 3, 5, 11, 77, ...
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= If[IntegerQ[n/(n-k+1)], PartitionsP[n/(n-k+1)], 0]; Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jan 12 2023 *)
-
SageMath
def T(n,k): return number_of_partitions(n/(n-k+1)) if (n%(n-k+1))==0 else 0 flatten([[T(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jan 12 2023
Formula
Extensions
Edited and extended by Max Alekseyev, May 07 2010