cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168016 Triangle T(n,k) read by rows in which row n list the number of partitions of n into parts divisible by k for k=n,n-1,...,1.

Original entry on oeis.org

1, 1, 2, 1, 0, 3, 1, 0, 2, 5, 1, 0, 0, 0, 7, 1, 0, 0, 2, 3, 11, 1, 0, 0, 0, 0, 0, 15, 1, 0, 0, 0, 2, 0, 5, 22, 1, 0, 0, 0, 0, 0, 3, 0, 30, 1, 0, 0, 0, 0, 2, 0, 0, 7, 42, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, 1, 0, 0, 0, 0, 0, 2, 0, 3, 5, 11, 77, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 101
Offset: 1

Views

Author

Omar E. Pol, Nov 21 2009

Keywords

Examples

			Triangle begins:
==============================================
.... k: 12 11 10. 9. 8. 7. 6. 5. 4. 3.. 2.. 1.
==============================================
n=1 ....................................... 1,
n=2 ................................... 1,  2,
n=3 ............................... 1,  0,  3,
n=4 ............................ 1, 0,  2,  5,
n=5 ......................... 1, 0, 0,  0,  7,
n=6 ...................... 1, 0, 0, 2,  3, 11,
n=7 ................... 1, 0, 0, 0, 0,  0, 15,
n=8 ................ 1, 0, 0, 0, 2, 0,  5, 22,
n=9 ............. 1, 0, 0, 0, 0, 0, 3,  0, 30,
n=10 ......... 1, 0, 0, 0, 0, 2, 0, 0,  7, 42,
n=11 ...... 1, 0, 0, 0, 0, 0, 0, 0, 0,  0, 56,
n=12 ... 1, 0, 0, 0, 0, 0, 2, 0, 3, 5, 11, 77,
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= If[IntegerQ[n/(n-k+1)], PartitionsP[n/(n-k+1)], 0];
    Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jan 12 2023 *)
  • SageMath
    def T(n,k): return number_of_partitions(n/(n-k+1)) if (n%(n-k+1))==0 else 0
    flatten([[T(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jan 12 2023

Formula

T(n, k) = A000041(n/k) if k|n; otherwise T(n,k) = 0.
T(n, n) = A000041(n).
From G. C. Greubel, Jan 12 2023: (Start)
T(2*n, n) = A000007(n-1).
Sum_{k=1..n} T(n, k) = A047968(n).
Sum_{k=2..n-1} T(n, k) = A168111(n-1). (End)

Extensions

Edited and extended by Max Alekseyev, May 07 2010