A168017 Triangle read by rows in which row n lists the number of partitions of n into parts divisible by d, where d is a divisor of n listed in decreasing order.
1, 1, 2, 1, 3, 1, 2, 5, 1, 7, 1, 2, 3, 11, 1, 15, 1, 2, 5, 22, 1, 3, 30, 1, 2, 7, 42, 1, 56, 1, 2, 3, 5, 11, 77, 1, 101, 1, 2, 15, 135, 1, 3, 7, 176, 1, 2, 5, 22, 231, 1, 297, 1, 2, 3, 11, 30, 385, 1, 490, 1, 2, 5, 7, 42, 627, 1, 3, 15, 792, 1, 2, 56, 1002
Offset: 1
Examples
Consider row n=8: (1, 2, 5, 22). The divisors of 8 listed in decreasing order are 8, 4, 2, 1 (see A056538). There is 1 partition of 8 into parts divisible by 8. Also, there are 2 partitions of 8 into parts divisible by 4: {(8), (4+4)}; 5 partitions of 8 into parts divisible by 2: {(8), (6+2), (4+4), (4+2+2), (2+2+2+2)}; and 22 partitions of 8 into parts divisible by 1, because A000041(8)=22. Then row 8 is formed by 1, 2, 5, 22. Triangle begins: 1; 1, 2; 1, 3; 1, 2, 5; 1, 7; 1, 2, 3, 11; 1, 15; 1, 2, 5, 22; 1, 3, 30; 1, 2, 7, 42; 1, 56; 1, 2, 3, 5, 11, 77;
Links
- Alois P. Heinz, Rows n = 1..1400, flattened
- Omar E. Pol, Illustration of the partitions of n, for n = 1 .. 9
Crossrefs
Programs
-
Maple
with(numtheory): b:= proc(n, i, d) option remember; if n<0 then 0 elif n=0 then 1 elif i<1 then 0 else b(n, i-d, d) +b(n-i, i, d) fi end: T:= proc(n) local l; l:= sort([divisors(n)[]],`>`); seq(b(n, n, l[i]), i=1..nops(l)) end: seq(T(n), n=1..30); # Alois P. Heinz, Oct 21 2011
-
Mathematica
b[n_, i_, d_] := b[n, i, d] = Which[n<0, 0, n==0, 1, i<1, 0, True, b[n, i - d, d] + b[n-i, i, d]]; T[n_] := Module[{l = Divisors[n] // Reverse}, Table[b[n, n, l[[i]]], {i, 1, Length[l]}]]; Table[T[n], {n, 1, 30}] // Flatten (* Jean-François Alcover, Dec 03 2015, after Alois P. Heinz *)
Comments