cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168017 Triangle read by rows in which row n lists the number of partitions of n into parts divisible by d, where d is a divisor of n listed in decreasing order.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 5, 1, 7, 1, 2, 3, 11, 1, 15, 1, 2, 5, 22, 1, 3, 30, 1, 2, 7, 42, 1, 56, 1, 2, 3, 5, 11, 77, 1, 101, 1, 2, 15, 135, 1, 3, 7, 176, 1, 2, 5, 22, 231, 1, 297, 1, 2, 3, 11, 30, 385, 1, 490, 1, 2, 5, 7, 42, 627, 1, 3, 15, 792, 1, 2, 56, 1002
Offset: 1

Views

Author

Omar E. Pol, Nov 22 2009

Keywords

Comments

Positive values of triangle A168016.
The number of terms of row n is equal to the number of divisors of n: A000005(n).
Note that the last term of each row is the number of partitions of n: A000041(n).
Also, it appears that row n lists the partition numbers of the divisors of n. [Omar E. Pol, Nov 23 2009]

Examples

			Consider row n=8: (1, 2, 5, 22). The divisors of 8 listed in decreasing order are 8, 4, 2, 1 (see A056538). There is 1 partition of 8 into parts divisible by 8. Also, there are 2 partitions of 8 into parts divisible by 4: {(8), (4+4)}; 5 partitions of 8 into parts divisible by 2: {(8), (6+2), (4+4), (4+2+2), (2+2+2+2)}; and 22 partitions of 8 into parts divisible by 1, because A000041(8)=22. Then row 8 is formed by 1, 2, 5, 22.
Triangle begins:
1;
1,  2;
1,  3;
1,  2,  5;
1,  7;
1,  2,  3, 11;
1, 15;
1,  2,  5, 22;
1,  3, 30;
1,  2,  7, 42;
1, 56;
1,  2,  3,  5, 11, 77;
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i, d) option remember;
          if n<0 then 0
        elif n=0 then 1
        elif i<1 then 0
        else b(n, i-d, d) +b(n-i, i, d)
          fi
        end:
    T:= proc(n) local l;
          l:= sort([divisors(n)[]],`>`);
          seq(b(n, n, l[i]), i=1..nops(l))
        end:
    seq(T(n), n=1..30); # Alois P. Heinz, Oct 21 2011
  • Mathematica
    b[n_, i_, d_] := b[n, i, d] = Which[n<0, 0, n==0, 1, i<1, 0, True, b[n, i - d, d] + b[n-i, i, d]]; T[n_] := Module[{l = Divisors[n] // Reverse}, Table[b[n, n, l[[i]]], {i, 1, Length[l]}]]; Table[T[n], {n, 1, 30}] // Flatten (* Jean-François Alcover, Dec 03 2015, after Alois P. Heinz *)