cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A047968 a(n) = Sum_{d|n} p(d), where p(d) = A000041 = number of partitions of d.

Original entry on oeis.org

1, 3, 4, 8, 8, 17, 16, 30, 34, 52, 57, 99, 102, 153, 187, 261, 298, 432, 491, 684, 811, 1061, 1256, 1696, 1966, 2540, 3044, 3876, 4566, 5846, 6843, 8610, 10203, 12610, 14906, 18491, 21638, 26508, 31290, 38044, 44584, 54133, 63262, 76241
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Inverse Moebius transform of A000041.
Row sums of triangle A137587. - Gary W. Adamson, Jan 27 2008
Row sums of triangle A168021. - Omar E. Pol, Nov 20 2009
Row sums of triangle A168017. Row sums of triangle A168018. - Omar E. Pol, Nov 25 2009
Sum of the partition numbers of the divisors of n. - Omar E. Pol, Feb 25 2014
Conjecture: for n > 6, a(n) is strictly increasing. - Franklin T. Adams-Watters, Apr 19 2014
Number of constant multiset partitions of multisets spanning an initial interval of positive integers with multiplicities an integer partition of n. - Gus Wiseman, Sep 16 2018

Examples

			For n = 10 the divisors of 10 are 1, 2, 5, 10, hence the partition numbers of the divisors of 10 are 1, 2, 7, 42, so a(10) = 1 + 2 + 7 + 42 = 52. - _Omar E. Pol_, Feb 26 2014
From _Gus Wiseman_, Sep 16 2018: (Start)
The a(6) = 17 constant multiset partitions:
  (111111)  (111)(111)    (11)(11)(11)  (1)(1)(1)(1)(1)(1)
  (111222)  (12)(12)(12)
  (111122)  (112)(112)
  (112233)  (123)(123)
  (111112)
  (111123)
  (111223)
  (111234)
  (112234)
  (112345)
  (123456)
(End)
		

Crossrefs

Programs

  • Maple
    with(combinat): with(numtheory): a := proc(n) c := 0: l := sort(convert(divisors(n), list)): for i from 1 to nops(l) do c := c+numbpart(l[i]) od: RETURN(c): end: for j from 1 to 60 do printf(`%d, `, a(j)) od: # Zerinvary Lajos, Apr 14 2007
  • Mathematica
    a[n_] := Sum[ PartitionsP[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 44}] (* Jean-François Alcover, Oct 03 2013 *)

Formula

G.f.: Sum_{k>0} (-1+1/Product_{i>0} (1-z^(k*i))). - Vladeta Jovovic, Jun 22 2003
G.f.: sum(n>0,A000041(n)*x^n/(1-x^n)). - Mircea Merca, Feb 24 2014.
a(n) = A168111(n) + A000041(n). - Omar E. Pol, Feb 26 2014
a(n) = Sum_{y is a partition of n} A000005(GCD(y)). - Gus Wiseman, Sep 16 2018

A056538 Irregular triangle read by rows: row n lists the divisors of n in decreasing order.

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 2, 1, 5, 1, 6, 3, 2, 1, 7, 1, 8, 4, 2, 1, 9, 3, 1, 10, 5, 2, 1, 11, 1, 12, 6, 4, 3, 2, 1, 13, 1, 14, 7, 2, 1, 15, 5, 3, 1, 16, 8, 4, 2, 1, 17, 1, 18, 9, 6, 3, 2, 1, 19, 1, 20, 10, 5, 4, 2, 1, 21, 7, 3, 1, 22, 11, 2, 1, 23, 1, 24, 12, 8, 6, 4, 3, 2, 1, 25, 5, 1, 26, 13, 2, 1, 27, 9
Offset: 1

Views

Author

Antti Karttunen, Jun 20 2000

Keywords

Comments

Old name was "Replace n by its divisors in reverse order."
This gives the second elements of the ordered pairs (a,b), a >= 1, b >= 1, ordered by their product ab.
T(n,k) = n / A027750(n,k) = A027750(n,n-k+1), 1 <= k <= A000005(n). - Reinhard Zumkeller, Sep 28 2014
The 2nd column of the triangle is the largest proper divisor (A032742). - Charles Kusniec, Jan 30 2021

Examples

			Triangle begins:
1;
2, 1;
3, 1;
4, 2, 1;
5, 1;
6, 3, 2, 1;
7, 1;
8, 4, 2, 1;
9, 3, 1;
10, 5, 2, 1;
11, 1;
12, 6, 4, 3, 2, 1;
13, 1;
14, 7, 2, 1;
15, 5, 3, 1;
16, 8, 4, 2, 1;
17, 1;
18, 9, 6, 3, 2, 1;
19, 1;
20, 10, 5, 4, 2, 1;
		

Crossrefs

Cf. A027750 for the first elements, A056534, A168017, A000005 (row lengths), A000203 (row sums), A032742 (largest proper divisor).

Programs

  • Haskell
    a056538 n k = a056538_tabf !! (n-1) !! (k-1)
    a056538_row n = a056538_tabf !! (n-1)
    a056538_tabf = map reverse a027750_tabf
    -- Reinhard Zumkeller, Sep 28 2014
    
  • Magma
    [Reverse(Divisors(n)) : n in [1..30]];
    
  • Maple
    map(op,[seq(reverse(sort(divisors(j))),j=1..30)]);
    cdr := proc(l) if 0 = nops(l) then ([]) else (l[2..nops(l)]): fi: end:
    reverse := proc(l) if 0 = nops(l) then ([]) else [op(reverse(cdr(l))), l[1]]; fi: end:
  • Mathematica
    Table[Reverse@ Divisors@ n, {n, 27}] // Flatten (* Michael De Vlieger, Jul 27 2016 *)
  • PARI
    row(n)=Vecrev(divisors(n)) \\ Charles R Greathouse IV, Sep 02 2015

Formula

a(n) = A064894(A064896(n)).

Extensions

Definition revised by N. J. A. Sloane, Jul 27 2016

A168021 Triangle T(n,k) read by rows in which row n lists the number of partitions of n into parts divisible by k.

Original entry on oeis.org

1, 2, 1, 3, 0, 1, 5, 2, 0, 1, 7, 0, 0, 0, 1, 11, 3, 2, 0, 0, 1, 15, 0, 0, 0, 0, 0, 1, 22, 5, 0, 2, 0, 0, 0, 1, 30, 0, 3, 0, 0, 0, 0, 0, 1, 42, 7, 0, 0, 2, 0, 0, 0, 0, 1, 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 77, 11, 5, 3, 0, 2, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Omar E. Pol, Nov 20 2009, Nov 21 2009

Keywords

Comments

The row-reversed version is A168016.
Also see A168020.

Examples

			Triangle begins:
==============================================
...... k: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11 12
==============================================
n=1 ..... 1,
n=2 ..... 2, 1,
n=3 ..... 3, 0, 1,
n=4 ..... 5, 2, 0, 1,
n=5 ..... 7, 0, 0, 0, 1,
n=6 .... 11, 3, 2, 0, 0, 1,
n=7 .... 15, 0, 0, 0, 0, 0, 1,
n=8 .... 22, 5, 0, 2, 0, 0, 0, 1,
n=9 .... 30, 0, 3, 0, 0, 0, 0, 0, 1,
n=10 ... 42, 7, 0, 0, 2, 0, 0, 0, 0, 1,
n=11 ... 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
n=12 ... 77,11, 5, 3, 0, 2, 0, 0, 0, 0, 0, 1,
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= If[IntegerQ[n/k], PartitionsP[n/k], 0];
    Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jan 12 2023 *)
  • SageMath
    def A168021(n,k): return number_of_partitions(n/k) if (n%k)==0 else 0
    flatten([[A168021(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jan 12 2023

Formula

T(n,k) = A000041(n/k) if k|n, else T(n,k)=0.
Sum_{k=1..n} T(n, k) = A047968(n).
From G. C. Greubel, Jan 12 2023: (Start)
T(2*n, n) = 2*A000012(n).
T(2*n-1, n+1) = A000007(n-2). (End)

Extensions

Edited by Charles R Greathouse IV, Mar 23 2010

A168020 Square array read by antidiagonals in which row n lists the number of partitions of n into parts divisible by k.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 5, 0, 0, 0, 7, 2, 1, 0, 0, 11, 0, 0, 0, 0, 0, 15, 3, 0, 1, 0, 0, 0, 22, 0, 2, 0, 0, 0, 0, 0, 30, 5, 0, 0, 1, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, 7, 3, 2, 0, 1, 0, 0, 0, 0, 0, 77, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 101, 11, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Nov 20 2009

Keywords

Comments

In the square array, note that the column k starts with k-1 zeros. Then list each partition number of positive integers followed by k-1 zeros. See A000041, which is the main entry for this sequence.

Examples

			The array, A(n, k), begins:
   n | k = 1   2   3   4   5   6   7   8   9  10  11  12
  ---+--------------------------------------------------
   1 |     1   0   0   0   0   0   0   0   0   0   0   0
   2 |     2   1   0   0   0   0   0   0   0   0   0   0
   3 |     3   0   1   0   0   0   0   0   0   0   0   0
   4 |     5   2   0   1   0   0   0   0   0   0   0   0
   5 |     7   0   0   0   1   0   0   0   0   0   0   0
   6 |    11   3   2   0   0   1   0   0   0   0   0   0
   7 |    15   0   0   0   0   0   1   0   0   0   0   0
   8 |    22   5   0   2   0   0   0   1   0   0   0   0
   9 |    30   0   3   0   0   0   0   0   1   0   0   0
  10 |    42   7   0   0   2   0   0   0   0   1   0   0
  11 |    56   0   0   0   0   0   0   0   0   0   1   0
  12 |    77  11   5   3   0   2   0   0   0   0   0   1
  ...
Antidiagonal triangle, T(n,k), begins as:
   1;
   2, 0;
   3, 1, 0;
   5, 0, 0, 0;
   7, 2, 1, 0, 0;
  11, 0, 0, 0, 0, 0;
  15, 3, 0, 1, 0, 0, 0;
  22, 0, 2, 0, 0, 0, 0, 0;
  30, 5, 0, 0, 1, 0, 0, 0, 0;
  42, 0, 0, 0, 0, 0, 0, 0, 0, 0;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= If[IntegerQ[(n-k+1)/k], PartitionsP[(n-k+1)/k], 0];
    Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jan 12 2023 *)
  • SageMath
    def A168020(n,k): return number_of_partitions((n-k+1)/k) if ((n-k+1)%k)==0 else 0
    flatten([[A168020(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jan 12 2023

Formula

A(n, k) = A000041(n/k) if k divides n, otherwise A(n, k) = 0 (array).
A(n, 1) = A(n*k, k) = A000041(n).
From G. C. Greubel, Jan 12 2023: (Start)
T(n, k) = A000041((n-k+1)/k) if k divides (n-k+1), otherwise T(n, k) = 0 (triangle).
T(n, 1) = A000041(n).
T(2*n, n) = 2*A000007(n-1), n >= 1. (End)

Extensions

Edited by Omar E. Pol, Nov 21 2009
Edited by Charles R Greathouse IV, Mar 23 2010
Edited by Max Alekseyev, May 07 2010

A168018 Triangle read by rows in which row n lists the number of partitions of n into parts divisible by d, where d is a divisor of n.

Original entry on oeis.org

1, 2, 1, 3, 1, 5, 2, 1, 7, 1, 11, 3, 2, 1, 15, 1, 22, 5, 2, 1, 30, 3, 1, 42, 7, 2, 1, 56, 1, 77, 11, 5, 3, 2, 1, 101, 1, 135, 15, 2, 1, 176, 7, 3, 1, 231, 22, 5, 2, 1, 297, 1, 385, 30, 11, 3, 2, 1, 490, 1, 627, 42, 7, 5, 2, 1, 792, 15, 3, 1, 1002, 56, 2, 1, 1255, 1, 1575, 77, 22, 11, 5, 3, 2
Offset: 1

Views

Author

Omar E. Pol, Nov 22 2009

Keywords

Comments

Positive values of triangle A168021.
Note that column 1 lists the numbers of partitions A000041(n).
Row n has A000005(n) terms.
Also, it appears that row n lists the partition numbers of the divisors of n, in decreasing order. [Omar E. Pol, Nov 23 2009]

Examples

			For example:
Consider row 8: (22, 5, 2, 1). The divisors of 8 are 1, 2, 4, 8 (see A027750). Also, there are 22 partitions of 8 into parts divisible by 1 (A000041(8)=22); 5 partitions of 8 into parts divisible by 2: {(8),(6+2),(4+4),(4+2+2),(2+2+2+2)}; 2 partitions of 8 into parts divisible by 4: {(8),(4+4)}; and 1 partition of 8 into parts divisible by 8. Then row 8 is formed by 22, 5, 2, 1.
Triangle begins:
1;
2, 1;
3, 1;
5, 2, 1;
7, 1;
11, 3, 2, 1;
15, 1;
22, 5, 2, 1;
30, 3, 1;
42, 7, 2, 1;
56, 1;
77, 11, 5, 3, 2, 1;
		

Crossrefs

Programs

  • Maple
    A168018 := proc(n) local dvs,p,i,d,a,pp,divs,par; dvs := sort(convert(numtheory[divisors](n),list)) ; p := combinat[partition](n) ; for i from 1 to nops(dvs) do d := op(i,dvs) ; a := 0 ; for pp in p do divs := true; for par in pp do if par mod d <> 0 then divs := false; end if; end do ; if divs then a := a+1 ; end if; end do ; printf("%d,",a) ; end do ; end proc: for n from 1 to 40 do A168018(n) ; end do : # R. J. Mathar, Feb 05 2010

Extensions

Terms beyond row 12 from R. J. Mathar, Feb 05 2010

A168111 Sum of the partition numbers of the proper divisors of n, with a(1) = 0.

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 8, 4, 10, 1, 22, 1, 18, 11, 30, 1, 47, 1, 57, 19, 59, 1, 121, 8, 104, 34, 158, 1, 242, 1, 261, 60, 300, 23, 514, 1, 493, 105, 706, 1, 959, 1, 1066, 217, 1258, 1, 1927, 16, 2010, 301, 2545, 1, 3442, 64, 3898, 494, 4568, 1, 6555, 1, 6845, 841, 8610
Offset: 1

Views

Author

Omar E. Pol, Nov 22 2009

Keywords

Comments

Row sums of triangle A168021 except the first column.
Row sums of triangle A168016 except the last column.

Crossrefs

Programs

  • Maple
    A047968 := proc(n) add(combinat[numbpart](d), d= numtheory[divisors](n) ) ; end proc: A000041 := proc(n) combinat[numbpart](n) ; end proc: A168111 := proc(n) A047968(n)-A000041(n) ; end proc: seq(A168111(n),n=1..90) ; # R. J. Mathar, Jan 25 2010
  • Mathematica
    a[ n_] := If[n < 1, 0, Sum[ PartitionsP[ d] Boole[ d < n], {d, Divisors @ n}]]; (* Michael Somos, Feb 24 2014 *)
  • PARI
    A168111(n) = sumdiv(n,d,(dAntti Karttunen, Nov 14 2017

Formula

a(n) = A047968(n) - A000041(n).
G.f.: Sum_{n > 0} A000041(n)*x^(2*n)/(1-x^n). - Mircea Merca, Feb 24 2014
G.f.: x^2 + x^3 + 3*x^4 + x^5 + 6*x^6 + x^7 + 8*x^8 + 4*x^9 + 10*x^10 + x^11 + ... - Michael Somos, Feb 24 2014

Extensions

Terms beyond a(12) from R. J. Mathar, Jan 25 2010
New name from Omar E. Pol, Feb 25 2014

A182720 Triangle read by rows: T(n,k) = A000041(k) if k divides n, T(n,k)=0 otherwise.

Original entry on oeis.org

1, 1, 2, 1, 0, 3, 1, 2, 0, 5, 1, 0, 0, 0, 7, 1, 2, 3, 0, 0, 11, 1, 0, 0, 0, 0, 0, 15, 1, 2, 0, 5, 0, 0, 0, 22, 1, 0, 3, 0, 0, 0, 0, 0, 30, 1, 2, 0, 0, 7, 0, 0, 0, 0, 42, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, 1, 2, 3, 5, 0, 11, 0, 0, 0, 0, 0, 77, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 101, 1, 2, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 135, 1, 0, 3, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 176
Offset: 1

Views

Author

Omar E. Pol, Nov 28 2010

Keywords

Examples

			1,
1, 2,
1, 0, 3,
1, 2, 0, 5,
1, 0, 0, 0, 7,
1, 2, 3, 0, 0, 11,
1, 0, 0, 0, 0, 0, 15,
1, 2, 0, 5, 0, 0, 0, 22,
1, 0, 3, 0, 0, 0, 0, 0, 30,
1, 2, 0, 0, 7, 0, 0, 0, 0, 42
		

Crossrefs

Cf. A000005, A000041, A051731, A168016, A168017, A168018, A168021. Positive integers of row n give A168017.
Row sums give A047968.

Programs

  • Maple
    A182720 := proc(n,k) if n mod k = 0 then combinat[numbpart](k); else 0; end if ; end proc:
    seq(seq(A182720(n,k),k=1..n),n=1..15) ;

Formula

T(n,k) = A051731(n,k)*A000041(k).
Showing 1-7 of 7 results.