A168532 Triangle read by rows, A054525 * A168021.
1, 1, 1, 2, 0, 1, 3, 1, 0, 1, 6, 0, 0, 0, 1, 7, 2, 1, 0, 0, 1, 14, 0, 0, 0, 0, 0, 1, 17, 3, 0, 1, 0, 0, 0, 1, 27, 0, 2, 0, 0, 0, 0, 0, 1, 34, 6, 0, 0, 1, 0, 0, 0, 0, 1, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 63, 7, 3, 2, 0, 1, 0, 0, 0, 0, 0, 1, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
First few rows of the triangle: 1; 1, 1; 2, 0, 1; 3, 1, 0, 1; 6, 0, 0, 0, 1; 7, 2, 1, 0, 0, 1; 14, 0, 0, 0, 0, 0, 1; 17, 3, 0, 1, 0, 0, 0, 1; 27, 0, 2, 0, 0, 0, 0, 0, 1; 34, 6, 0, 0, 1, 0, 0, 0, 0, 1; 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; 63, 7, 3, 2, 0, 1, 0, 0, 0, 0, 0, 1; 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; 119, 14, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1; 167, 0, 6, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; 209, 17, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1; 296, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1, x, b(n, i-1)+(p-> add(coeff(p, x, t)*x^igcd(t, i), t=0..degree(p)))(add(b(n-i*j, i-1), j=1..n/i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)): seq(T(n), n=1..17); # Alois P. Heinz, Mar 29 2015
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i==1, x, b[n, i-1] + Function[{p}, Sum[Coefficient[p, x, t]*x^GCD[t, i], {t, 0, Exponent[p, x]}]][Sum[b[n - i*j, i-1], {j, 1, n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, n]]; Table[T[n], {n, 1, 17}] // Flatten (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)
Formula
Extensions
Corrected and extended by Alois P. Heinz, Jun 06 2013
Comments