cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A168532 Triangle read by rows, A054525 * A168021.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 3, 1, 0, 1, 6, 0, 0, 0, 1, 7, 2, 1, 0, 0, 1, 14, 0, 0, 0, 0, 0, 1, 17, 3, 0, 1, 0, 0, 0, 1, 27, 0, 2, 0, 0, 0, 0, 0, 1, 34, 6, 0, 0, 1, 0, 0, 0, 0, 1, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 63, 7, 3, 2, 0, 1, 0, 0, 0, 0, 0, 1, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 28 2009

Keywords

Comments

Row sums = A000041 starting (1, 2, 3, 5, 7, 11, 15, ...).
T(n,k) is the number of partitions of n into parts with GCD = k. - Alois P. Heinz, Jun 06 2013

Examples

			First few rows of the triangle:
    1;
    1,  1;
    2,  0, 1;
    3,  1, 0, 1;
    6,  0, 0, 0, 1;
    7,  2, 1, 0, 0, 1;
   14,  0, 0, 0, 0, 0, 1;
   17,  3, 0, 1, 0, 0, 0, 1;
   27,  0, 2, 0, 0, 0, 0, 0, 1;
   34,  6, 0, 0, 1, 0, 0, 0, 0, 1;
   55,  0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
   63,  7, 3, 2, 0, 1, 0, 0, 0, 0, 0, 1;
  100,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  119, 14, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1;
  167,  0, 6, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  209, 17, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1;
  296,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Cf. A256067 (the same for LCM).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1, x,
          b(n, i-1)+(p-> add(coeff(p, x, t)*x^igcd(t, i),
          t=0..degree(p)))(add(b(n-i*j, i-1), j=1..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)):
    seq(T(n), n=1..17);  # Alois P. Heinz, Mar 29 2015
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i==1, x, b[n, i-1] + Function[{p}, Sum[Coefficient[p, x, t]*x^GCD[t, i], {t, 0, Exponent[p, x]}]][Sum[b[n - i*j, i-1], {j, 1, n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, n]]; Table[T[n], {n, 1, 17}] // Flatten (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)

Formula

Mobius transform of triangle A168021 = an infinite lower triangular matrix with aerated variants of A000837 in each column; where A000837 = the Mobius transform of the partition numbers, A000041.

Extensions

Corrected and extended by Alois P. Heinz, Jun 06 2013

A035363 Number of partitions of n into even parts.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 0, 5, 0, 7, 0, 11, 0, 15, 0, 22, 0, 30, 0, 42, 0, 56, 0, 77, 0, 101, 0, 135, 0, 176, 0, 231, 0, 297, 0, 385, 0, 490, 0, 627, 0, 792, 0, 1002, 0, 1255, 0, 1575, 0, 1958, 0, 2436, 0, 3010, 0, 3718, 0, 4565, 0, 5604, 0, 6842, 0, 8349, 0, 10143, 0, 12310, 0
Offset: 0

Views

Author

Keywords

Comments

Convolved with A036469 = A000070. - Gary W. Adamson, Jun 09 2009
Note that these partitions are located in the head of the last section of the set of partitions of n (see A135010). - Omar E. Pol, Nov 20 2009
Number of symmetric unimodal compositions of n+2 where the maximal part appears twice, see example. Also number of symmetric unimodal compositions of n where the maximal part appears an even number of times. - Joerg Arndt, Jun 11 2013
Number of partitions of n having parts of even multiplicity. These are the conjugates of the partitions from the definition. Example: a(8)=5 because we have [4,4],[3,3,1,1],[2,2,2,2],[2,2,1,1,1,1], and [1,1,1,1,1,1,1,1]. - Emeric Deutsch, Jan 27 2016
From Gus Wiseman, May 22 2021: (Start)
The Heinz numbers of the conjugate partitions described in Emeric Deutsch's comment above are given by A000290.
For n > 1, also the number of integer partitions of n-1 whose only odd part is the smallest. The Heinz numbers of these partitions are given by A341446. For example, the a(2) = 1 through a(14) = 15 partitions (empty columns shown as dots, A..D = 10..13) are:
1 . 3 . 5 . 7 . 9 . B . D
21 41 43 63 65 85
221 61 81 83 A3
421 441 A1 C1
2221 621 443 643
4221 641 661
22221 821 841
4421 A21
6221 4441
42221 6421
222221 8221
44221
62221
422221
2222221
Also the number of integer partitions of n whose greatest part is the sum of all the other parts. The Heinz numbers of these partitions are given by A344415. For example, the a(2) = 1 through a(12) = 11 partitions (empty columns not shown) are:
(11) (22) (33) (44) (55) (66)
(211) (321) (422) (532) (633)
(3111) (431) (541) (642)
(4211) (5221) (651)
(41111) (5311) (6222)
(52111) (6321)
(511111) (6411)
(62211)
(63111)
(621111)
(6111111)
Also the number of integer partitions of n of length n/2. The Heinz numbers of these partitions are given by A340387. For example, the a(2) = 1 through a(14) = 15 partitions (empty columns not shown) are:
(2) (22) (222) (2222) (22222) (222222) (2222222)
(31) (321) (3221) (32221) (322221) (3222221)
(411) (3311) (33211) (332211) (3322211)
(4211) (42211) (333111) (3332111)
(5111) (43111) (422211) (4222211)
(52111) (432111) (4322111)
(61111) (441111) (4331111)
(522111) (4421111)
(531111) (5222111)
(621111) (5321111)
(711111) (5411111)
(6221111)
(6311111)
(7211111)
(8111111)
(End)

Examples

			From _Joerg Arndt_, Jun 11 2013: (Start)
There are a(12)=11 symmetric unimodal compositions of 12+2=14 where the maximal part appears twice:
01:  [ 1 1 1 1 1 2 2 1 1 1 1 1 ]
02:  [ 1 1 1 1 3 3 1 1 1 1 ]
03:  [ 1 1 1 4 4 1 1 1 ]
04:  [ 1 1 2 3 3 2 1 1 ]
05:  [ 1 1 5 5 1 1 ]
06:  [ 1 2 4 4 2 1 ]
07:  [ 1 6 6 1 ]
08:  [ 2 2 3 3 2 2 ]
09:  [ 2 5 5 2 ]
10:  [ 3 4 4 3 ]
11:  [ 7 7 ]
There are a(14)=15 symmetric unimodal compositions of 14 where the maximal part appears an even number of times:
01:  [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 2 2 1 1 1 1 1 ]
03:  [ 1 1 1 1 3 3 1 1 1 1 ]
04:  [ 1 1 1 2 2 2 2 1 1 1 ]
05:  [ 1 1 1 4 4 1 1 1 ]
06:  [ 1 1 2 3 3 2 1 1 ]
07:  [ 1 1 5 5 1 1 ]
08:  [ 1 2 2 2 2 2 2 1 ]
09:  [ 1 2 4 4 2 1 ]
10:  [ 1 3 3 3 3 1 ]
11:  [ 1 6 6 1 ]
12:  [ 2 2 3 3 2 2 ]
13:  [ 2 5 5 2 ]
14:  [ 3 4 4 3 ]
15:  [ 7 7 ]
(End)
a(8)=5 because we  have [8], [6,2], [4,4], [4,2,2], and [2,2,2,2]. - _Emeric Deutsch_, Jan 27 2016
From _Gus Wiseman_, May 22 2021: (Start)
The a(0) = 1 through a(12) = 11 partitions into even parts are the following (empty columns shown as dots, A = 10, C = 12). The Heinz numbers of these partitions are given by A066207.
  ()  .  (2)  .  (4)   .  (6)    .  (8)     .  (A)      .  (C)
                 (22)     (42)      (44)       (64)        (66)
                          (222)     (62)       (82)        (84)
                                    (422)      (442)       (A2)
                                    (2222)     (622)       (444)
                                               (4222)      (642)
                                               (22222)     (822)
                                                           (4422)
                                                           (6222)
                                                           (42222)
                                                           (222222)
(End)
		

References

  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17. Zentralblatt MATH, Zbl 1071.05501.

Crossrefs

Bisection (even part) gives the partition numbers A000041.
Column k=0 of A103919, A264398.
Note: A-numbers of ranking sequences are in parentheses below.
The version for odd instead of even parts is A000009 (A066208).
The version for parts divisible by 3 instead of 2 is A035377.
The strict case is A035457.
The Heinz numbers of these partitions are given by A066207.
The ordered version (compositions) is A077957 prepended by (1,0).
This is column k = 2 of A168021.
The multiplicative version (factorizations) is A340785.
A000569 counts graphical partitions (A320922).
A004526 counts partitions of length 2 (A001358).
A025065 counts palindromic partitions (A265640).
A027187 counts partitions with even length/maximum (A028260/A244990).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts partitions of even length and sum (A340784).
A340601 counts partitions of even rank (A340602).
The following count partitions of even length:
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Maple
    ZL:= [S, {C = Cycle(B), S = Set(C), E = Set(B), B = Prod(Z,Z)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=0..69); # Zerinvary Lajos, Mar 26 2008
    g := 1/mul(1-x^(2*k), k = 1 .. 100): gser := series(g, x = 0, 80): seq(coeff(gser, x, n), n = 0 .. 78); # Emeric Deutsch, Jan 27 2016
    # Using the function EULER from Transforms (see link at the bottom of the page).
    [1,op(EULER([0,1,seq(irem(n,2),n=0..66)]))]; # Peter Luschny, Aug 19 2020
    # next Maple program:
    a:= n-> `if`(n::odd, 0, combinat[numbpart](n/2)):
    seq(a(n), n=0..84);  # Alois P. Heinz, Jun 22 2021
  • Mathematica
    nmax = 50; s = Range[2, nmax, 2];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 05 2020 *)
  • Python
    from sympy import npartitions
    def A035363(n): return 0 if n&1 else npartitions(n>>1) # Chai Wah Wu, Sep 23 2023

Formula

G.f.: Product_{k even} 1/(1 - x^k).
Convolution with the number of partitions into distinct parts (A000009, which is also number of partitions into odd parts) gives the number of partitions (A000041). - Franklin T. Adams-Watters, Jan 06 2006
If n is even then a(n)=A000041(n/2) otherwise a(n)=0. - Omar E. Pol, Nov 20 2009
G.f.: 1 + x^2*(1 - G(0))/(1-x^2) where G(k) = 1 - 1/(1-x^(2*k+2))/(1-x^2/(x^2-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 23 2013
a(n) = A096441(n) - A000009(n), n >= 1. - Omar E. Pol, Aug 16 2013
G.f.: exp(Sum_{k>=1} x^(2*k)/(k*(1 - x^(2*k)))). - Ilya Gutkovskiy, Aug 13 2018

A047968 a(n) = Sum_{d|n} p(d), where p(d) = A000041 = number of partitions of d.

Original entry on oeis.org

1, 3, 4, 8, 8, 17, 16, 30, 34, 52, 57, 99, 102, 153, 187, 261, 298, 432, 491, 684, 811, 1061, 1256, 1696, 1966, 2540, 3044, 3876, 4566, 5846, 6843, 8610, 10203, 12610, 14906, 18491, 21638, 26508, 31290, 38044, 44584, 54133, 63262, 76241
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Inverse Moebius transform of A000041.
Row sums of triangle A137587. - Gary W. Adamson, Jan 27 2008
Row sums of triangle A168021. - Omar E. Pol, Nov 20 2009
Row sums of triangle A168017. Row sums of triangle A168018. - Omar E. Pol, Nov 25 2009
Sum of the partition numbers of the divisors of n. - Omar E. Pol, Feb 25 2014
Conjecture: for n > 6, a(n) is strictly increasing. - Franklin T. Adams-Watters, Apr 19 2014
Number of constant multiset partitions of multisets spanning an initial interval of positive integers with multiplicities an integer partition of n. - Gus Wiseman, Sep 16 2018

Examples

			For n = 10 the divisors of 10 are 1, 2, 5, 10, hence the partition numbers of the divisors of 10 are 1, 2, 7, 42, so a(10) = 1 + 2 + 7 + 42 = 52. - _Omar E. Pol_, Feb 26 2014
From _Gus Wiseman_, Sep 16 2018: (Start)
The a(6) = 17 constant multiset partitions:
  (111111)  (111)(111)    (11)(11)(11)  (1)(1)(1)(1)(1)(1)
  (111222)  (12)(12)(12)
  (111122)  (112)(112)
  (112233)  (123)(123)
  (111112)
  (111123)
  (111223)
  (111234)
  (112234)
  (112345)
  (123456)
(End)
		

Crossrefs

Programs

  • Maple
    with(combinat): with(numtheory): a := proc(n) c := 0: l := sort(convert(divisors(n), list)): for i from 1 to nops(l) do c := c+numbpart(l[i]) od: RETURN(c): end: for j from 1 to 60 do printf(`%d, `, a(j)) od: # Zerinvary Lajos, Apr 14 2007
  • Mathematica
    a[n_] := Sum[ PartitionsP[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 44}] (* Jean-François Alcover, Oct 03 2013 *)

Formula

G.f.: Sum_{k>0} (-1+1/Product_{i>0} (1-z^(k*i))). - Vladeta Jovovic, Jun 22 2003
G.f.: sum(n>0,A000041(n)*x^n/(1-x^n)). - Mircea Merca, Feb 24 2014.
a(n) = A168111(n) + A000041(n). - Omar E. Pol, Feb 26 2014
a(n) = Sum_{y is a partition of n} A000005(GCD(y)). - Gus Wiseman, Sep 16 2018

A096441 Number of palindromic and unimodal compositions of n. Equivalently, the number of orbits under conjugation of even nilpotent n X n matrices.

Original entry on oeis.org

1, 2, 2, 4, 3, 7, 5, 11, 8, 17, 12, 26, 18, 37, 27, 54, 38, 76, 54, 106, 76, 145, 104, 199, 142, 266, 192, 357, 256, 472, 340, 621, 448, 809, 585, 1053, 760, 1354, 982, 1740, 1260, 2218, 1610, 2818, 2048, 3559, 2590, 4485, 3264, 5616, 4097, 7018, 5120, 8728, 6378
Offset: 1

Views

Author

Nolan R. Wallach (nwallach(AT)ucsd.edu), Aug 10 2004

Keywords

Comments

Number of partitions of n such that all differences between successive parts are even, see example. [Joerg Arndt, Dec 27 2012]
Number of partitions of n where either all parts are odd or all parts are even. - Omar E. Pol, Aug 16 2013
From Gus Wiseman, Jan 13 2022: (Start)
Also the number of integer partitions of n with all even multiplicities (or run-lengths) except possibly the first. These are the conjugates of the partitions described by Joerg Arndt above. For example, the a(1) = 1 through a(8) = 11 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (311) (33) (322) (44)
(211) (11111) (222) (511) (422)
(1111) (411) (31111) (611)
(2211) (1111111) (2222)
(21111) (3311)
(111111) (22211)
(41111)
(221111)
(2111111)
(11111111)
(End)

Examples

			From _Joerg Arndt_, Dec 27 2012: (Start)
There are a(10)=17 partitions of 10 where all differences between successive parts are even:
[ 1]  [ 1 1 1 1 1 1 1 1 1 1 ]
[ 2]  [ 2 2 2 2 2 ]
[ 3]  [ 3 1 1 1 1 1 1 1 ]
[ 4]  [ 3 3 1 1 1 1 ]
[ 5]  [ 3 3 3 1 ]
[ 6]  [ 4 2 2 2 ]
[ 7]  [ 4 4 2 ]
[ 8]  [ 5 1 1 1 1 1 ]
[ 9]  [ 5 3 1 1 ]
[10]  [ 5 5 ]
[11]  [ 6 2 2 ]
[12]  [ 6 4 ]
[13]  [ 7 1 1 1 ]
[14]  [ 7 3 ]
[15]  [ 8 2 ]
[16]  [ 9 1 ]
[17]  [ 10 ]
(End)
		

References

  • A. G. Elashvili and V. G. Kac, Classification of good gradings of simple Lie algebras. Lie groups and invariant theory, 85-104, Amer. Math. Soc. Transl. Ser. 2, 213, Amer. Math. Soc., Providence, RI, 2005.

Crossrefs

Bisections are A078408 and A096967.
The complement in partitions is counted by A006477
A version for compositions is A016116.
A pointed version is A035363, ranked by A066207.
A000041 counts integer partitions.
A025065 counts palindromic partitions.
A027187 counts partitions with even length/maximum.
A035377 counts partitions using multiples of 3.
A058696 counts partitions of even numbers, ranked by A300061.
A340785 counts factorizations into even factors.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i>n, 0,
          `if`(irem(n, i)=0, 1, 0) +add(`if`(irem(j, 2)=0,
           b(n-i*j, i+1), 0), j=0..n/i))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=1..60);  # Alois P. Heinz, Mar 26 2014
  • Mathematica
    (* The following Mathematica program first generates all of the palindromic, unimodal compositions of n and then counts them. *)
    Pal[n_] := Block[{i, j, k, m, Q, L}, If[n == 1, Return[{{1}}]]; If[n == 2, Return[{{1, 1}, {2}}]]; L = {{n}}; If[Mod[n, 2] == 0, L = Append[L, {n/2, n/2}]]; For[i = 1, i < n, i++, Q = Pal[n - 2i]; m = Length[Q]; For[j = 1, j <= m, j++, If[i <= Q[[j, 1]], L = Append[L, Append[Prepend[Q[[j]], i], i]]]]]; L] NoPal[n_] := Length[Pal[n]]
    a[n_] := PartitionsQ[n] + If[EvenQ[n], PartitionsP[n/2], 0]; Table[a[n], {n, 1, 55}] (* Jean-François Alcover, Mar 17 2014, after Vladeta Jovovic *)
    Table[Length[Select[IntegerPartitions[n],And@@EvenQ/@Rest[Length/@Split[#]]&]],{n,1,30}] (* Gus Wiseman, Jan 13 2022 *)
  • PARI
    my(x='x+O('x^66)); Vec(eta(x^2)/eta(x)+1/eta(x^2)-2) \\ Joerg Arndt, Jan 17 2016

Formula

G.f.: sum(j>=1, q^j * (1-q^j)/prod(i=1..j, 1-q^(2*i) ) ).
G.f.: F + G - 2, where F = Product_{j>=1} 1/(1-q^(2*j)), G = Product_{j>=0} 1/(1-q^(2*j+1)).
a(2*n) = A000041(n) + A000009(2*n); a(2*n-1) = A000009(2*n-1). - Vladeta Jovovic, Aug 11 2004
a(n) = A000009(n) + A035363(n) = A000041(n) - A006477(n). - Omar E. Pol, Aug 16 2013

A168020 Square array read by antidiagonals in which row n lists the number of partitions of n into parts divisible by k.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 5, 0, 0, 0, 7, 2, 1, 0, 0, 11, 0, 0, 0, 0, 0, 15, 3, 0, 1, 0, 0, 0, 22, 0, 2, 0, 0, 0, 0, 0, 30, 5, 0, 0, 1, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, 7, 3, 2, 0, 1, 0, 0, 0, 0, 0, 77, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 101, 11, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Nov 20 2009

Keywords

Comments

In the square array, note that the column k starts with k-1 zeros. Then list each partition number of positive integers followed by k-1 zeros. See A000041, which is the main entry for this sequence.

Examples

			The array, A(n, k), begins:
   n | k = 1   2   3   4   5   6   7   8   9  10  11  12
  ---+--------------------------------------------------
   1 |     1   0   0   0   0   0   0   0   0   0   0   0
   2 |     2   1   0   0   0   0   0   0   0   0   0   0
   3 |     3   0   1   0   0   0   0   0   0   0   0   0
   4 |     5   2   0   1   0   0   0   0   0   0   0   0
   5 |     7   0   0   0   1   0   0   0   0   0   0   0
   6 |    11   3   2   0   0   1   0   0   0   0   0   0
   7 |    15   0   0   0   0   0   1   0   0   0   0   0
   8 |    22   5   0   2   0   0   0   1   0   0   0   0
   9 |    30   0   3   0   0   0   0   0   1   0   0   0
  10 |    42   7   0   0   2   0   0   0   0   1   0   0
  11 |    56   0   0   0   0   0   0   0   0   0   1   0
  12 |    77  11   5   3   0   2   0   0   0   0   0   1
  ...
Antidiagonal triangle, T(n,k), begins as:
   1;
   2, 0;
   3, 1, 0;
   5, 0, 0, 0;
   7, 2, 1, 0, 0;
  11, 0, 0, 0, 0, 0;
  15, 3, 0, 1, 0, 0, 0;
  22, 0, 2, 0, 0, 0, 0, 0;
  30, 5, 0, 0, 1, 0, 0, 0, 0;
  42, 0, 0, 0, 0, 0, 0, 0, 0, 0;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= If[IntegerQ[(n-k+1)/k], PartitionsP[(n-k+1)/k], 0];
    Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jan 12 2023 *)
  • SageMath
    def A168020(n,k): return number_of_partitions((n-k+1)/k) if ((n-k+1)%k)==0 else 0
    flatten([[A168020(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jan 12 2023

Formula

A(n, k) = A000041(n/k) if k divides n, otherwise A(n, k) = 0 (array).
A(n, 1) = A(n*k, k) = A000041(n).
From G. C. Greubel, Jan 12 2023: (Start)
T(n, k) = A000041((n-k+1)/k) if k divides (n-k+1), otherwise T(n, k) = 0 (triangle).
T(n, 1) = A000041(n).
T(2*n, n) = 2*A000007(n-1), n >= 1. (End)

Extensions

Edited by Omar E. Pol, Nov 21 2009
Edited by Charles R Greathouse IV, Mar 23 2010
Edited by Max Alekseyev, May 07 2010

A168016 Triangle T(n,k) read by rows in which row n list the number of partitions of n into parts divisible by k for k=n,n-1,...,1.

Original entry on oeis.org

1, 1, 2, 1, 0, 3, 1, 0, 2, 5, 1, 0, 0, 0, 7, 1, 0, 0, 2, 3, 11, 1, 0, 0, 0, 0, 0, 15, 1, 0, 0, 0, 2, 0, 5, 22, 1, 0, 0, 0, 0, 0, 3, 0, 30, 1, 0, 0, 0, 0, 2, 0, 0, 7, 42, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, 1, 0, 0, 0, 0, 0, 2, 0, 3, 5, 11, 77, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 101
Offset: 1

Views

Author

Omar E. Pol, Nov 21 2009

Keywords

Examples

			Triangle begins:
==============================================
.... k: 12 11 10. 9. 8. 7. 6. 5. 4. 3.. 2.. 1.
==============================================
n=1 ....................................... 1,
n=2 ................................... 1,  2,
n=3 ............................... 1,  0,  3,
n=4 ............................ 1, 0,  2,  5,
n=5 ......................... 1, 0, 0,  0,  7,
n=6 ...................... 1, 0, 0, 2,  3, 11,
n=7 ................... 1, 0, 0, 0, 0,  0, 15,
n=8 ................ 1, 0, 0, 0, 2, 0,  5, 22,
n=9 ............. 1, 0, 0, 0, 0, 0, 3,  0, 30,
n=10 ......... 1, 0, 0, 0, 0, 2, 0, 0,  7, 42,
n=11 ...... 1, 0, 0, 0, 0, 0, 0, 0, 0,  0, 56,
n=12 ... 1, 0, 0, 0, 0, 0, 2, 0, 3, 5, 11, 77,
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= If[IntegerQ[n/(n-k+1)], PartitionsP[n/(n-k+1)], 0];
    Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jan 12 2023 *)
  • SageMath
    def T(n,k): return number_of_partitions(n/(n-k+1)) if (n%(n-k+1))==0 else 0
    flatten([[T(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jan 12 2023

Formula

T(n, k) = A000041(n/k) if k|n; otherwise T(n,k) = 0.
T(n, n) = A000041(n).
From G. C. Greubel, Jan 12 2023: (Start)
T(2*n, n) = A000007(n-1).
Sum_{k=1..n} T(n, k) = A047968(n).
Sum_{k=2..n-1} T(n, k) = A168111(n-1). (End)

Extensions

Edited and extended by Max Alekseyev, May 07 2010

A168017 Triangle read by rows in which row n lists the number of partitions of n into parts divisible by d, where d is a divisor of n listed in decreasing order.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 5, 1, 7, 1, 2, 3, 11, 1, 15, 1, 2, 5, 22, 1, 3, 30, 1, 2, 7, 42, 1, 56, 1, 2, 3, 5, 11, 77, 1, 101, 1, 2, 15, 135, 1, 3, 7, 176, 1, 2, 5, 22, 231, 1, 297, 1, 2, 3, 11, 30, 385, 1, 490, 1, 2, 5, 7, 42, 627, 1, 3, 15, 792, 1, 2, 56, 1002
Offset: 1

Views

Author

Omar E. Pol, Nov 22 2009

Keywords

Comments

Positive values of triangle A168016.
The number of terms of row n is equal to the number of divisors of n: A000005(n).
Note that the last term of each row is the number of partitions of n: A000041(n).
Also, it appears that row n lists the partition numbers of the divisors of n. [Omar E. Pol, Nov 23 2009]

Examples

			Consider row n=8: (1, 2, 5, 22). The divisors of 8 listed in decreasing order are 8, 4, 2, 1 (see A056538). There is 1 partition of 8 into parts divisible by 8. Also, there are 2 partitions of 8 into parts divisible by 4: {(8), (4+4)}; 5 partitions of 8 into parts divisible by 2: {(8), (6+2), (4+4), (4+2+2), (2+2+2+2)}; and 22 partitions of 8 into parts divisible by 1, because A000041(8)=22. Then row 8 is formed by 1, 2, 5, 22.
Triangle begins:
1;
1,  2;
1,  3;
1,  2,  5;
1,  7;
1,  2,  3, 11;
1, 15;
1,  2,  5, 22;
1,  3, 30;
1,  2,  7, 42;
1, 56;
1,  2,  3,  5, 11, 77;
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i, d) option remember;
          if n<0 then 0
        elif n=0 then 1
        elif i<1 then 0
        else b(n, i-d, d) +b(n-i, i, d)
          fi
        end:
    T:= proc(n) local l;
          l:= sort([divisors(n)[]],`>`);
          seq(b(n, n, l[i]), i=1..nops(l))
        end:
    seq(T(n), n=1..30); # Alois P. Heinz, Oct 21 2011
  • Mathematica
    b[n_, i_, d_] := b[n, i, d] = Which[n<0, 0, n==0, 1, i<1, 0, True, b[n, i - d, d] + b[n-i, i, d]]; T[n_] := Module[{l = Divisors[n] // Reverse}, Table[b[n, n, l[[i]]], {i, 1, Length[l]}]]; Table[T[n], {n, 1, 30}] // Flatten (* Jean-François Alcover, Dec 03 2015, after Alois P. Heinz *)

A168018 Triangle read by rows in which row n lists the number of partitions of n into parts divisible by d, where d is a divisor of n.

Original entry on oeis.org

1, 2, 1, 3, 1, 5, 2, 1, 7, 1, 11, 3, 2, 1, 15, 1, 22, 5, 2, 1, 30, 3, 1, 42, 7, 2, 1, 56, 1, 77, 11, 5, 3, 2, 1, 101, 1, 135, 15, 2, 1, 176, 7, 3, 1, 231, 22, 5, 2, 1, 297, 1, 385, 30, 11, 3, 2, 1, 490, 1, 627, 42, 7, 5, 2, 1, 792, 15, 3, 1, 1002, 56, 2, 1, 1255, 1, 1575, 77, 22, 11, 5, 3, 2
Offset: 1

Views

Author

Omar E. Pol, Nov 22 2009

Keywords

Comments

Positive values of triangle A168021.
Note that column 1 lists the numbers of partitions A000041(n).
Row n has A000005(n) terms.
Also, it appears that row n lists the partition numbers of the divisors of n, in decreasing order. [Omar E. Pol, Nov 23 2009]

Examples

			For example:
Consider row 8: (22, 5, 2, 1). The divisors of 8 are 1, 2, 4, 8 (see A027750). Also, there are 22 partitions of 8 into parts divisible by 1 (A000041(8)=22); 5 partitions of 8 into parts divisible by 2: {(8),(6+2),(4+4),(4+2+2),(2+2+2+2)}; 2 partitions of 8 into parts divisible by 4: {(8),(4+4)}; and 1 partition of 8 into parts divisible by 8. Then row 8 is formed by 22, 5, 2, 1.
Triangle begins:
1;
2, 1;
3, 1;
5, 2, 1;
7, 1;
11, 3, 2, 1;
15, 1;
22, 5, 2, 1;
30, 3, 1;
42, 7, 2, 1;
56, 1;
77, 11, 5, 3, 2, 1;
		

Crossrefs

Programs

  • Maple
    A168018 := proc(n) local dvs,p,i,d,a,pp,divs,par; dvs := sort(convert(numtheory[divisors](n),list)) ; p := combinat[partition](n) ; for i from 1 to nops(dvs) do d := op(i,dvs) ; a := 0 ; for pp in p do divs := true; for par in pp do if par mod d <> 0 then divs := false; end if; end do ; if divs then a := a+1 ; end if; end do ; printf("%d,",a) ; end do ; end proc: for n from 1 to 40 do A168018(n) ; end do : # R. J. Mathar, Feb 05 2010

Extensions

Terms beyond row 12 from R. J. Mathar, Feb 05 2010

A168019 Square array A(n,k) read by antidiagonals, in which row n lists the number of partitions of n into parts divisible by k+1.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 3, 1, 0, 1, 5, 0, 0, 0, 1, 7, 2, 1, 0, 0, 1, 11, 0, 0, 0, 0, 0, 1, 15, 3, 0, 1, 0, 0, 0, 1, 22, 0, 2, 0, 0, 0, 0, 0, 1, 30, 5, 0, 0, 1, 0, 0, 0, 0, 1, 42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 56, 7, 3, 2, 0, 1, 0, 0, 0, 0, 0, 1, 77, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Omar E. Pol, Nov 21 2009

Keywords

Comments

Note that column k lists each partition number A000041 followed by k zeros. See also A168020 and A168021.
Let A(n,k) denote the number of partitions of n into parts divisible by k+1. Let p(n) denote the number of partitions of n. If k+1 is a divisor of n then A(n,k) = p(n/(k+1)) otherwise A(n,k) = 0. [Conjectured by Omar E. Pol, Nov 25 2009] - this is trivial, just divide each part size by k - Franklin T. Adams-Watters, May 14 2010.

Examples

			The array, A(n, k), begins:
==================================================
... Column k: 0.. 1. 2. 3. 4. 5. 6. 7. 8. 9 10 11
. Row ...........................................
...n ............................................
==================================================
.. 0 ........ 1,  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
.. 1 ........ 1,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
.. 2 ........ 2,  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
.. 3 ........ 3,  0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
.. 4 ........ 5,  2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
.. 5 ........ 7,  0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
.. 6 ....... 11,  3, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0,
.. 7 ....... 15,  0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
.. 8 ....... 22,  5, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0,
.. 9 ....... 30,  0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0,
. 10 ....... 42,  7, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0,
. 11 ....... 56,  0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
. 12 ....... 77, 11, 5, 3, 0, 2, 0, 0, 0, 0, 0, 1,
...
Antidiagonal triangle, T(n, k), begins as:
   1;
   1, 1;
   2, 0, 1;
   3, 1, 0, 1;
   5, 0, 0, 0, 1;
   7, 2, 1, 0, 0, 1;
  11, 0, 0, 0, 0, 0, 1;
  15, 3, 0, 1, 0, 0, 0, 1;
  22, 0, 2, 0, 0, 0, 0, 0, 1;
  30, 5, 0, 0, 1, 0, 0, 0, 0, 1;
  42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= If[IntegerQ[(n-k)/(k+1)], PartitionsP[(n-k)/(k+1)], 0];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 13 2023 *)
  • SageMath
    def A168019(n,k): return number_of_partitions((n-k)/(k+1)) if ((n-k)%(k+1))==0 else 0
    flatten([[A168019(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Jan 13 2023

Formula

From G. C. Greubel, Jan 13 2023: (Start)
A(n, k) = A000041(n/(k+1)) if (k+1)|n, otherwise 0 (array).
T(n, k) = A000041((n-k)/(k+1)) if (k+1)|(n-k), otherwise 0 (antidiagonals).
A(n, 0) = T(n, 0) = A000041(n).
T(2*n, n) = A(n, n) = A000007(n).
Sum_{k=0..n} T(n, k) = A083710(n+1). (End)

Extensions

Edited by Charles R Greathouse IV, Mar 23 2010
Edited by Franklin T. Adams-Watters, May 14 2010

A168111 Sum of the partition numbers of the proper divisors of n, with a(1) = 0.

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 8, 4, 10, 1, 22, 1, 18, 11, 30, 1, 47, 1, 57, 19, 59, 1, 121, 8, 104, 34, 158, 1, 242, 1, 261, 60, 300, 23, 514, 1, 493, 105, 706, 1, 959, 1, 1066, 217, 1258, 1, 1927, 16, 2010, 301, 2545, 1, 3442, 64, 3898, 494, 4568, 1, 6555, 1, 6845, 841, 8610
Offset: 1

Views

Author

Omar E. Pol, Nov 22 2009

Keywords

Comments

Row sums of triangle A168021 except the first column.
Row sums of triangle A168016 except the last column.

Crossrefs

Programs

  • Maple
    A047968 := proc(n) add(combinat[numbpart](d), d= numtheory[divisors](n) ) ; end proc: A000041 := proc(n) combinat[numbpart](n) ; end proc: A168111 := proc(n) A047968(n)-A000041(n) ; end proc: seq(A168111(n),n=1..90) ; # R. J. Mathar, Jan 25 2010
  • Mathematica
    a[ n_] := If[n < 1, 0, Sum[ PartitionsP[ d] Boole[ d < n], {d, Divisors @ n}]]; (* Michael Somos, Feb 24 2014 *)
  • PARI
    A168111(n) = sumdiv(n,d,(dAntti Karttunen, Nov 14 2017

Formula

a(n) = A047968(n) - A000041(n).
G.f.: Sum_{n > 0} A000041(n)*x^(2*n)/(1-x^n). - Mircea Merca, Feb 24 2014
G.f.: x^2 + x^3 + 3*x^4 + x^5 + 6*x^6 + x^7 + 8*x^8 + 4*x^9 + 10*x^10 + x^11 + ... - Michael Somos, Feb 24 2014

Extensions

Terms beyond a(12) from R. J. Mathar, Jan 25 2010
New name from Omar E. Pol, Feb 25 2014
Showing 1-10 of 15 results. Next