cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A168534 Triangle read by rows, A168532 * A000012; as infinite lower triangular matrices.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 5, 2, 1, 1, 7, 1, 1, 1, 1, 11, 4, 2, 1, 1, 1, 15, 1, 1, 1, 1, 1, 1, 22, 5, 2, 2, 1, 1, 1, 1, 30, 3, 3, 1, 1, 1, 1, 1, 1, 42, 8, 2, 2, 2, 1, 1, 1, 1, 1, 56, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 77, 14, 7, 4, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 28 2009

Keywords

Comments

Row sums = A078392: (1, 3, 5, 9, 11, 20, 21,...).
Triangle A168533 = A000012 * A168532
Left border = the partition numbers, A000041 starting with offset 1.

Examples

			First few rows of the triangle =
1;
2, 1;
3, 1, 1;
5, 2, 1, 1;
7, 1, 1, 1, 1;
11, 4, 2, 1, 1, 1;
15, 1, 1, 1, 1, 1, 1;
22, 5, 2, 2, 1, 1, 1, 1;
30, 3, 3, 1, 1, 1, 1, 1, 1;
42, 8, 2, 2, 2, 1, 1, 1, 1, 1;
56, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
77, 14, 7, 4, 2, 2, 1, 1, 1, 1, 1, 1;
101, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
135, 16, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;
176, 9, 9, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
231, 22, 5, 5, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
...
		

Crossrefs

Formula

Triangle read by rows, A168532 * A000012; where A000012 = an infinite lower
triangular matrix with all 1's. The operation takes partial row sums
starting from the right of each row.

A168533 Triangle read by rows, A000012 * A168532, as infinite lower triangular matrices.

Original entry on oeis.org

1, 2, 1, 4, 1, 1, 7, 2, 1, 1, 13, 2, 1, 1, 1, 20, 4, 2, 1, 1, 1, 34, 4, 2, 1, 1, 1, 1, 51, 7, 2, 2, 1, 1, 1, 1, 78, 7, 4, 2, 1, 1, 1, 1, 1, 112, 13, 4, 2, 2, 2, 21, 1, 1, 167, 13, 4, 2, 2, 1, 1, 1, 1, 1, 1, 230, 20, 7, 4, 2, 2, 21, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 28 2009

Keywords

Comments

Row sums = A026905: (1, 3, 6, 11, 18, 29, 44, 66,...)
Triangle A168534 = A168532 * A000012

Examples

			First few rows of the triangle =
1;
2, 1;
4, 1, 1;
7, 2, 1, 1;
13, 2, 1, 1, 1;
20, 4, 2, 1, 1, 1;
34, 4, 2, 1, 1, 1, 1;
51, 7, 2, 2, 1, 1, 1, 1;
78, 7, 4, 2, 1, 1, 1, 1, 1;
112, 13, 4, 2, 2, 1, 1, 1, 1, 1;
167, 13, 4, 2, 2, 1, 1, 1, 1, 1, 1;
230, 20, 7, 4, 2, 2, 1, 1, 1, 1, 1, 1;
330, 20, 7, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1;
449, 34, 7, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;
616, 34, 13, 4, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
825, 51, 13, 7, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
1121, 51, 13, 7, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Formula

Triangle read by rows, A000012 * A168532; where A000012 = an infinite lower
triangular matrix with all 1's. The operation takes partial sums of A168532
column terms.

A000837 Number of partitions of n into relatively prime parts. Also aperiodic partitions.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 7, 14, 17, 27, 34, 55, 63, 100, 119, 167, 209, 296, 347, 489, 582, 775, 945, 1254, 1481, 1951, 2334, 2980, 3580, 4564, 5386, 6841, 8118, 10085, 12012, 14862, 17526, 21636, 25524, 31082, 36694, 44582, 52255, 63260, 74170, 88931, 104302
Offset: 0

Views

Author

Keywords

Comments

Starting (1, 1, 2, 3, 6, 7, 14, ...), = row sums of triangle A137585. - Gary W. Adamson, Jan 27 2008
Triangle A168532 has aerated variants of this sequence in each column starting with offset 1, row sums = A000041. - Gary W. Adamson, Nov 28 2009
A partition is aperiodic iff its multiplicities are relatively prime, i.e., its Heinz number (A215366) is not a perfect power (A007916). - Gus Wiseman, Dec 19 2017
This sequence is monotonically increasing; each partition of n-1 can have a part of size 1 added to it to get a partition counted in a(n). - Franklin T. Adams-Watters, Jul 24 2020

Examples

			Of the 11 partitions of 6, we must exclude 6, 4+2, 3+3 and 2+2+2, so a(6) = 11 - 4 = 7.
For n=6, 2+2+1+1 is periodic because it can be written 2*(2+1), similarly 1+1+1+1+1+1, 3+3 and 2+2+2.
The a(6) = 7 partitions into relatively prime parts are (51), (411), (321), (3111), (2211), (21111), (111111). The a(6) = 7 aperiodic partitions are (6), (51), (42), (411), (321), (3111), (21111). - _Gus Wiseman_, Dec 19 2017
		

References

  • H. W. Gould, personal communication.

Crossrefs

Programs

  • Mathematica
    p[n_] := IntegerPartitions[n]; l[n_] := Length[p[n]]; g[n_, j_] := Apply[GCD, Part[p[n], j]]; h[n_] := Table[g[n, j], {j, 1, l[n]}]; Join[{1}, Table[Count[h[n], 1], {n, 1, 20}]]
    (* Clark Kimberling, Mar 09 2012 *)
    a[0] = 1; a[n_] := Sum[ MoebiusMu[n/d] * PartitionsP[d], {d, Divisors[n]}]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 03 2013 *)
  • PARI
    N=66; x='x+O('x^N); gf=2+sum(n=1,N, (1/eta(x^n))*moebius(n)); Vec(gf) \\ Joerg Arndt, May 11 2013
    
  • PARI
    print1("1, "); for(n=1,46,my(s=0);forpart(X=n,s+=gcd(X)==1);print1(s,", ")) \\ Hugo Pfoertner, Mar 27 2020
    
  • Python
    from sympy import npartitions, mobius, divisors
    def a(n): return 1 if n==0 else sum(mobius(n//d)*npartitions(d) for d in divisors(n)) # Indranil Ghosh, Apr 26 2017

Formula

Möbius transform of A000041. - Christian G. Bower, Jun 11 2000
Product_{n>0} 1/(1-q^n) = 1 + Sum_{n>0} a(n)*q^n/(1-q^n). - Mamuka Jibladze, Nov 14 2015
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)). - Vaclav Kotesovec, Jan 28 2019
a(n) <= p(n) <= a(n+1), where p(n) is the number of partitions of n (A000041). - Franklin T. Adams-Watters, Jul 24 2020

Extensions

Corrected and extended by David W. Wilson, Aug 15 1996
Additional name from Christian G. Bower, Jun 11 2000

A303140 Number of strict integer partitions of n with at least two but not all parts having a common divisor greater than 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 4, 2, 8, 7, 14, 14, 21, 18, 33, 32, 50, 54, 72, 67, 103, 110, 145, 155, 201, 196, 271, 293, 372, 400, 493, 512, 647, 704, 858, 924, 1115, 1167, 1436, 1560, 1854, 2022, 2368, 2510, 3005, 3255, 3804, 4144, 4792, 5116, 5989, 6514, 7486
Offset: 1

Views

Author

Gus Wiseman, Apr 19 2018

Keywords

Examples

			The a(14) = 7 partitions are (932), (8321), (7421), (653), (6521), (6431), (5432).
		

Crossrefs

Programs

  • Mathematica
    Table[Select[IntegerPartitions[n],UnsameQ@@#&&!CoprimeQ@@#&&GCD@@#===1&]//Length,{n,20}]

A303282 Numbers whose prime indices have no common divisor other than 1 but are not pairwise coprime.

Original entry on oeis.org

18, 36, 42, 45, 50, 54, 72, 75, 78, 84, 90, 98, 99, 100, 105, 108, 114, 126, 130, 135, 144, 150, 153, 156, 162, 168, 174, 175, 180, 182, 195, 196, 198, 200, 207, 210, 216, 222, 225, 228, 230, 231, 234, 242, 245, 250, 252, 258, 260, 266, 270, 275, 279, 285, 288
Offset: 1

Views

Author

Gus Wiseman, Apr 20 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. Two or more numbers are coprime if no pair of them has a common divisor other than 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of integer partitions whose Heinz numbers belong to this sequence begins (221), (2211), (421), (322), (331), (2221), (22111), (332), (621), (4211), (3221), (441), (522), (3311), (432), (22211).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[400],!CoprimeQ@@primeMS[#]&&GCD@@primeMS[#]===1&]

A366842 Number of integer partitions of n whose odd parts have a common divisor > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 1, 4, 1, 8, 3, 13, 6, 21, 10, 36, 15, 53, 28, 80, 41, 122, 63, 174, 97, 250, 140, 359, 201, 496, 299, 685, 410, 949, 575, 1284, 804, 1726, 1093, 2327, 1482, 3076, 2023, 4060, 2684, 5358, 3572, 6970, 4745, 9050, 6221, 11734, 8115, 15060, 10609
Offset: 0

Views

Author

Gus Wiseman, Oct 28 2023

Keywords

Examples

			The a(3) = 1 through a(11) = 13 partitions:
  (3)  .  (5)    (3,3)  (7)      (3,3,2)  (9)        (5,5)      (11)
          (3,2)         (4,3)             (5,4)      (4,3,3)    (6,5)
                        (5,2)             (6,3)      (3,3,2,2)  (7,4)
                        (3,2,2)           (7,2)                 (8,3)
                                          (3,3,3)               (9,2)
                                          (4,3,2)               (4,4,3)
                                          (5,2,2)               (5,4,2)
                                          (3,2,2,2)             (6,3,2)
                                                                (7,2,2)
                                                                (3,3,3,2)
                                                                (4,3,2,2)
                                                                (5,2,2,2)
                                                                (3,2,2,2,2)
		

Crossrefs

This is the odd case of A018783, complement A000837.
The even version is A047967.
The complement is counted by A366850, ranks A366846.
A000041 counts integer partitions, strict A000009.
A000740 counts relatively prime compositions.
A113685 counts partitions by sum of odds, stat A366528, w/o zeros A365067.
A168532 counts partitions by gcd.
A239261 counts partitions with (sum of odd parts) = (sum of even parts).
A289508 gives gcd of prime indices, positions of ones A289509.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], GCD@@Select[#,OddQ]>1&]], {n,0,30}]
  • Python
    from math import gcd
    from sympy.utilities.iterables import partitions
    def A366842(n): return sum(1 for p in partitions(n) if gcd(*(q for q in p if q&1))>1) # Chai Wah Wu, Oct 28 2023

A366843 Number of integer partitions of n into odd, relatively prime parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 4, 6, 6, 9, 11, 13, 17, 21, 23, 32, 37, 42, 53, 62, 70, 88, 103, 116, 139, 164, 184, 220, 255, 283, 339, 390, 435, 511, 578, 653, 759, 863, 963, 1107, 1259, 1401, 1609, 1814, 2015, 2303, 2589, 2878, 3259, 3648, 4058, 4580, 5119, 5672, 6364
Offset: 0

Views

Author

Gus Wiseman, Oct 28 2023

Keywords

Examples

			The a(1) = 1 through a(8) = 6 partitions:
  (1)  (11)  (111)  (31)    (311)    (51)      (331)      (53)
                    (1111)  (11111)  (3111)    (511)      (71)
                                     (111111)  (31111)    (3311)
                                               (1111111)  (5111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

Allowing even parts gives A000837.
The strict case is A366844, with evens A078374.
The complement is counted by A366852, with evens A018783.
The pairwise coprime version is A366853, with evens A051424.
A000041 counts integer partitions, strict A000009 (also into odds).
A000740 counts relatively prime compositions.
A168532 counts partitions by gcd.
A366842 counts partitions whose odd parts have a common divisor > 1.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||And@@OddQ/@#&&GCD@@#==1&]],{n,0,30}]
  • Python
    from math import gcd
    from sympy.utilities.iterables import partitions
    def A366843(n): return sum(1 for p in partitions(n) if all(d&1 for d in p) and gcd(*p)==1) # Chai Wah Wu, Oct 30 2023

A256067 Irregular table T(n,k): the number of partitions of n where the least common multiple of all parts equals k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 0, 0, 1, 0, 1, 1, 4, 2, 4, 1, 5, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 4, 3, 4, 1, 7, 1, 1, 1, 2, 0, 2, 0, 1, 1, 0, 0, 0, 0, 1, 1, 5, 3, 6, 2, 9, 1, 2, 1, 3, 0, 4, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 3, 6, 2
Offset: 0

Views

Author

R. J. Mathar, Mar 18 2015

Keywords

Examples

			The 5 partitions of n=4 are 1+1+1+1 (lcm=1), 1+1+2 (lcm=2), 2+2 (lcm=2), 1+3 (lcm=3) and 4 (lcm=4). So k=1, 3 and 4 appear once, k=2 appears twice.
The triangle starts:
  1 ;
  1 ;
  1  1;
  1  1  1;
  1  2  1  1;
  1  2  1  1  1  1;
  1  3  2  2  1  2;
  1  3  2  2  1  3  1  0  0  1  0  1;
  ...
		

Crossrefs

Cf. A000041 (row sums), A000793 (row lengths), A213952, A074761 (diagonal), A074752 (6th column), A008642 (4th column), A002266 (5th column), A002264 (3rd column), A132270 (7th column), A008643 (8th column), A008649 (9th column), A258470 (10th column).
Cf. A009490 (number of nonzero terms of rows), A074064 (last elements of rows), A168532 (the same for gcd), A181844 (Sum k*T(n,k)).

Programs

  • Maple
    A256067 := proc(n,k)
            local a,p ;
            a := 0 ;
            for p in combinat[partition](n) do
                    ilcm(op(p)) ;
                    if % = k then
                            a := a+1 ;
                    end if;
            end do:
            a;
    end proc:
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, x,
          b(n, i-1)+(p-> add(coeff(p, x, t)*x^ilcm(t, i),
          t=1..degree(p)))(add(b(n-i*j, i-1), j=1..n/i)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Mar 27 2015
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, x, b[n, i-1] + Function[{p}, Sum[ Coefficient[p, x, t]*x^LCM[t, i], {t, 1, Exponent[p, x]}]][Sum[b[n-i*j, i-1], {j, 1, n/i}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jun 22 2015, after Alois P. Heinz *)

Extensions

T(0,1)=1 prepended by Alois P. Heinz, Mar 27 2015

A303139 Number of integer partitions of n with at least two but not all parts having a common divisor greater than 1.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 5, 6, 13, 17, 33, 37, 68, 82, 125, 159, 237, 278, 409, 491, 674, 830, 1121, 1329, 1781, 2144, 2770, 3345, 4299, 5086, 6507, 7752, 9687, 11571, 14378, 16985, 21039, 24876, 30379, 35924, 43734, 51320, 62238, 73068, 87747, 103021, 123347, 143955
Offset: 1

Views

Author

Gus Wiseman, Apr 19 2018

Keywords

Examples

			The a(7) = 5 partitions are (421), (331), (322), (2221), (22111).
		

Crossrefs

Programs

  • Mathematica
    Table[Select[IntegerPartitions[n],!CoprimeQ@@#&&GCD@@#===1&]//Length,{n,30}]

A303280 Number of strict integer partitions of n whose parts have a common divisor other than 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 2, 3, 1, 5, 1, 5, 4, 6, 1, 10, 1, 11, 6, 12, 1, 19, 3, 18, 8, 23, 1, 36, 1, 32, 13, 38, 7, 57, 1, 54, 19, 68, 1, 95, 1, 90, 33, 104, 1, 148, 5, 149, 39, 166, 1, 230, 14, 226, 55, 256, 1, 360, 1, 340, 82, 390, 20, 527, 1, 513, 105, 609, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 20 2018

Keywords

Examples

			The a(18) = 10 strict partitions are (18), (10,8), (12,6), (14,4), (15,3), (16,2), (8,6,4), (9,6,3), (10,6,2), (12,4,2).
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
          `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= n-> -add(mobius(d)*b(n/d), d=divisors(n) minus {1}):
    seq(a(n), n=1..100);  # Alois P. Heinz, Apr 23 2018
  • Mathematica
    Table[-Sum[MoebiusMu[d]*PartitionsQ[n/d],{d,Rest[Divisors[n]]}],{n,100}]

Formula

a(n) = -Sum_{d|n, d > 1} mu(d) * A000009(n/d).
Showing 1-10 of 22 results. Next