cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A305713 Number of strict integer partitions of n into pairwise coprime parts.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 3, 4, 4, 5, 7, 8, 9, 10, 9, 12, 16, 18, 20, 21, 20, 23, 31, 36, 36, 37, 39, 44, 54, 64, 68, 65, 63, 74, 85, 99, 112, 106, 105, 121, 144, 164, 173, 166, 161, 178, 221, 252, 254, 254, 254, 272, 327, 372, 375, 368, 376, 405, 475, 552, 568, 536
Offset: 1

Views

Author

Gus Wiseman, Sep 01 2018

Keywords

Examples

			The a(13) = 9 strict partitions are (7,6), (8,5), (9,4), (10,3), (11,2), (12,1), (7,5,1), (5,4,3,1), (7,3,2,1).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&CoprimeQ@@#&]],{n,30}]

A318715 Number of strict integer partitions of n with relatively prime parts in which no two parts are relatively prime.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 1, 0, 4, 0, 3, 0, 1, 0, 5, 0, 8, 0, 2, 0, 5, 0, 10, 0, 4, 0, 13, 0, 15, 0, 3, 1, 13, 0, 19, 0, 9, 1, 24, 0, 20
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Examples

			The a(67) = 10 strict integer partitions are
  (45,12,10) (42,15,10) (40,15,12) (33,22,12) (28,21,18)
  (36,15,10,6) (30,15,12,10) (28,21,12,6) (24,18,15,10)
  (24,15,12,10,6).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,GCD@@#==1,And@@(GCD[##]>1&)@@@Select[Tuples[#,2],Less@@#&]]&]],{n,50}]

Extensions

a(71)-a(85) from Robert Price, Sep 08 2018

A318719 Heinz numbers of strict integer partitions in which no two parts are relatively prime.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 21, 23, 29, 31, 37, 39, 41, 43, 47, 53, 57, 59, 61, 65, 67, 71, 73, 79, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 127, 129, 131, 133, 137, 139, 149, 151, 157, 159, 163, 167, 173, 179, 181, 183, 185, 191, 193, 197
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Crossrefs

Programs

  • Mathematica
    Select[Range[200],And[SquareFreeQ[#],And@@(GCD[##]>1&)@@@Select[Tuples[PrimePi/@FactorInteger[#][[All,1]],2],Less@@#&]]&]

A302568 Odd numbers that are either prime or whose prime indices are pairwise coprime.

Original entry on oeis.org

3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 55, 59, 61, 67, 69, 71, 73, 77, 79, 83, 85, 89, 93, 95, 97, 101, 103, 107, 109, 113, 119, 123, 127, 131, 137, 139, 141, 143, 145, 149, 151, 155, 157, 161, 163, 165, 167, 173, 177, 179
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

Also Heinz numbers of partitions with pairwise coprime parts all greater than 1 (A007359), where singletons are considered coprime. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      3: {2}       43: {14}      89: {24}      141: {2,15}
      5: {3}       47: {15}      93: {2,11}    143: {5,6}
      7: {4}       51: {2,7}     95: {3,8}     145: {3,10}
     11: {5}       53: {16}      97: {25}      149: {35}
     13: {6}       55: {3,5}    101: {26}      151: {36}
     15: {2,3}     59: {17}     103: {27}      155: {3,11}
     17: {7}       61: {18}     107: {28}      157: {37}
     19: {8}       67: {19}     109: {29}      161: {4,9}
     23: {9}       69: {2,9}    113: {30}      163: {38}
     29: {10}      71: {20}     119: {4,7}     165: {2,3,5}
     31: {11}      73: {21}     123: {2,13}    167: {39}
     33: {2,5}     77: {4,5}    127: {31}      173: {40}
     35: {3,4}     79: {22}     131: {32}      177: {2,17}
     37: {12}      83: {23}     137: {33}      179: {41}
     41: {13}      85: {3,7}    139: {34}      181: {42}
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset systems.
03: {{1}}
05: {{2}}
07: {{1,1}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
19: {{1,1,1}}
23: {{2,2}}
29: {{1,3}}
31: {{5}}
33: {{1},{3}}
35: {{2},{1,1}}
37: {{1,1,2}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
51: {{1},{4}}
53: {{1,1,1,1}}
		

Crossrefs

A005117 is a superset.
A007359 counts partitions with these Heinz numbers.
A302569 allows evens, with squarefree version A302798.
A337694 is the pairwise non-coprime instead of pairwise coprime version.
A337984 does not include the primes.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions, ranked by A302696.
A337462 counts pairwise coprime compositions, ranked by A333227.
A337561 counts pairwise coprime strict compositions.
A337667 counts pairwise non-coprime compositions, ranked by A337666.
A337697 counts pairwise coprime compositions with no 1's.

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1,400,2],Or[PrimeQ[#],CoprimeQ@@primeMS[#]]&]

Formula

Equals A065091 \/ A337984.
Equals A302569 /\ A005408.

Extensions

Extended by Gus Wiseman, Oct 29 2020

A337694 Numbers with no two relatively prime prime indices.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 117, 121, 125, 127, 129, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167, 169, 171, 173, 179, 181, 183, 185, 189, 191, 193, 197, 199
Offset: 1

Views

Author

Gus Wiseman, Sep 23 2020

Keywords

Comments

First differs from A305078 in having 1 and lacking 195.
First differs from A305103 in having 1 and 169 and lacking 195.
First differs from A328336 in lacking 897, with prime indices (2,6,9).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of integer partitions in which no two parts are relatively prime. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   1: {}      37: {12}     79: {22}      121: {5,5}
   3: {2}     39: {2,6}    81: {2,2,2,2} 125: {3,3,3}
   5: {3}     41: {13}     83: {23}      127: {31}
   7: {4}     43: {14}     87: {2,10}    129: {2,14}
   9: {2,2}   47: {15}     89: {24}      131: {32}
  11: {5}     49: {4,4}    91: {4,6}     133: {4,8}
  13: {6}     53: {16}     97: {25}      137: {33}
  17: {7}     57: {2,8}   101: {26}      139: {34}
  19: {8}     59: {17}    103: {27}      147: {2,4,4}
  21: {2,4}   61: {18}    107: {28}      149: {35}
  23: {9}     63: {2,2,4} 109: {29}      151: {36}
  25: {3,3}   65: {3,6}   111: {2,12}    157: {37}
  27: {2,2,2} 67: {19}    113: {30}      159: {2,16}
  29: {10}    71: {20}    115: {3,9}     163: {38}
  31: {11}    73: {21}    117: {2,2,6}   167: {39}
		

Crossrefs

A200976 and A328673 count these partitions.
A302696 and A302569 are pairwise coprime instead of pairwise non-coprime.
A318719 is the squarefree case.
A328867 looks at distinct prime indices.
A337666 is the version for standard compositions.
A101268 counts pairwise coprime or singleton compositions.
A318717 counts strict pairwise non-coprime partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A335236 ranks compositions neither a singleton nor pairwise coprime.
A337462 counts pairwise coprime compositions.
A337667 counts pairwise non-coprime compositions.

Programs

  • Maple
    filter:= proc(n) local F,i,j,np;
      if n::even and n>2 then return false fi;
      F:= map(t -> numtheory:-pi(t[1]), ifactors(n)[2]);
      np:= nops(F);
      for i from 1 to np-1 do
        for j from i+1 to np do
          if igcd(F[i],F[j])=1 then return false fi
      od od;
      true
    end proc:
    select(filter, [$1..300]); # Robert Israel, Oct 06 2020
  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stabQ[u_,Q_]:=Array[#1==#2||!Q[u[[#1]],u[[#2]]]&,{Length[u],Length[u]},1,And];
    Select[Range[100],stabQ[primeMS[#],CoprimeQ]&]

A318716 Heinz numbers of strict integer partitions with relatively prime parts in which no two parts are relatively prime.

Original entry on oeis.org

2, 17719, 40807, 43381, 50431, 74269, 83143, 101543, 105703, 116143, 121307, 123469, 139919, 140699, 142883, 171613, 181831, 185803, 191479, 203557, 205813, 211381, 213239, 215267, 219271, 246703, 249587, 249899, 279371, 286897, 289007, 296993, 300847, 303949
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of strict integer partitions with Heinz numbers in the sequence begins: (1), (15,10,6), (21,14,6), (20,15,6), (15,12,10), (45,10,6), (18,15,10).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100000],With[{m=PrimePi/@FactorInteger[#][[All,1]]},And[SquareFreeQ[#],GCD@@m==1,And@@(GCD[##]>1&)@@@Select[Tuples[m,2],Less@@#&]]]&]

A303283 Squarefree numbers whose prime indices have no common divisor other than 1 but are not pairwise coprime.

Original entry on oeis.org

42, 78, 105, 114, 130, 174, 182, 195, 210, 222, 230, 231, 258, 266, 285, 318, 345, 357, 366, 370, 390, 406, 426, 429, 435, 455, 462, 470, 474, 483, 494, 518, 534, 546, 555, 570, 598, 602, 606, 610, 627, 638, 642, 645, 651, 663, 665, 678, 690, 705, 714, 715
Offset: 1

Views

Author

Gus Wiseman, Apr 20 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. Two or more numbers are coprime if no pair of them has a common divisor other than 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of strict integer partitions whose Heinz numbers belong to this sequence begins (4,2,1), (6,2,1), (4,3,2), (8,2,1), (6,3,1), (10,2,1), (6,4,1), (6,3,2), (4,3,2,1), (12,2,1), (9,3,1), (5,4,2), (14,2,1), (8,4,1), (8,3,2), (16,2,1), (9,3,2), (7,4,2), (18,2,1), (12,3,1), (6,3,2,1).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[400],SquareFreeQ[#]&&!CoprimeQ@@primeMS[#]&&GCD@@primeMS[#]===1&]

A337984 Heinz numbers of pairwise coprime integer partitions with no 1's, where a singleton is not considered coprime.

Original entry on oeis.org

15, 33, 35, 51, 55, 69, 77, 85, 93, 95, 119, 123, 141, 143, 145, 155, 161, 165, 177, 187, 201, 205, 209, 215, 217, 219, 221, 249, 253, 255, 265, 287, 291, 295, 309, 323, 327, 329, 335, 341, 355, 381, 385, 391, 395, 403, 407, 411, 413, 415, 437, 447, 451, 465
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2020

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
     15: {2,3}     155: {3,11}     265: {3,16}
     33: {2,5}     161: {4,9}      287: {4,13}
     35: {3,4}     165: {2,3,5}    291: {2,25}
     51: {2,7}     177: {2,17}     295: {3,17}
     55: {3,5}     187: {5,7}      309: {2,27}
     69: {2,9}     201: {2,19}     323: {7,8}
     77: {4,5}     205: {3,13}     327: {2,29}
     85: {3,7}     209: {5,8}      329: {4,15}
     93: {2,11}    215: {3,14}     335: {3,19}
     95: {3,8}     217: {4,11}     341: {5,11}
    119: {4,7}     219: {2,21}     355: {3,20}
    123: {2,13}    221: {6,7}      381: {2,31}
    141: {2,15}    249: {2,23}     385: {3,4,5}
    143: {5,6}     253: {5,9}      391: {7,9}
    145: {3,10}    255: {2,3,7}    395: {3,22}
		

Crossrefs

A005117 is a superset.
A337485 counts these partitions.
A302568 considers singletons to be coprime.
A304711 allows 1's, with squarefree version A302797.
A337694 is the pairwise non-coprime instead of pairwise coprime version.
A007359 counts partitions into singleton or pairwise coprime parts with no 1's
A101268 counts pairwise coprime or singleton compositions, ranked by A335235.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions, ranked by A302696.
A337462 counts pairwise coprime compositions, ranked by A333227.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime, ranked by A333228.
A337667 counts pairwise non-coprime compositions, ranked by A337666.
A337697 counts pairwise coprime compositions with no 1's.
A337983 counts pairwise non-coprime strict compositions, with unordered version A318717 ranked by A318719.

Programs

  • Mathematica
    Select[Range[1,100,2],SquareFreeQ[#]&&CoprimeQ@@PrimePi/@First/@FactorInteger[#]&]

Formula

A318749 Number of pairwise relatively nonprime strict factorizations of n (no two factors are coprime).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 5, 2, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 7, 1, 2, 2, 3, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). - Antti Karttunen, Oct 08 2018

Examples

			The a(96) = 7 factorizations are (96), (2*48), (4*24), (6*16), (8*12), (2*4*12), (2*6*8).
The a(480) = 18 factorizations:
  (480)
  (2*240) (4*120) (6*80) (8*60) (10*48) (12*40) (16*30) (20*24)
  (2*4*60) (2*6*40) (2*8*30) (2*10*24) (2*12*20) (4*6*20) (4*10*12) (6*8*10)
  (2*4*6*10)
		

Crossrefs

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[strfacs[n/d],Min@@#1>d&],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[strfacs[n],And@@(GCD[##]>1&)@@@Select[Tuples[#,2],Less@@#&]&]],{n,50}]
  • PARI
    A318749(n, m=n, facs=List([])) = if(1==n, (1!=gcd(Vec(facs))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A318749(n/d, d-1, newfacs))); (s)); \\ Antti Karttunen, Oct 08 2018

Extensions

More terms from Antti Karttunen, Oct 08 2018

A337987 Odd numbers whose distinct prime indices are pairwise coprime, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

15, 33, 35, 45, 51, 55, 69, 75, 77, 85, 93, 95, 99, 119, 123, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 201, 205, 207, 209, 215, 217, 219, 221, 225, 245, 249, 253, 255, 265, 275, 279, 287, 291, 295, 297, 309, 323, 327, 329, 335, 341, 355, 363, 369
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of integer partitions with no 1's whose distinct parts are pairwise coprime (A338315). The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
     15: {2,3}      135: {2,2,2,3}    215: {3,14}
     33: {2,5}      141: {2,15}       217: {4,11}
     35: {3,4}      143: {5,6}        219: {2,21}
     45: {2,2,3}    145: {3,10}       221: {6,7}
     51: {2,7}      153: {2,2,7}      225: {2,2,3,3}
     55: {3,5}      155: {3,11}       245: {3,4,4}
     69: {2,9}      161: {4,9}        249: {2,23}
     75: {2,3,3}    165: {2,3,5}      253: {5,9}
     77: {4,5}      175: {3,3,4}      255: {2,3,7}
     85: {3,7}      177: {2,17}       265: {3,16}
     93: {2,11}     187: {5,7}        275: {3,3,5}
     95: {3,8}      201: {2,19}       279: {2,2,11}
     99: {2,2,5}    205: {3,13}       287: {4,13}
    119: {4,7}      207: {2,2,9}      291: {2,25}
    123: {2,13}     209: {5,8}        295: {3,17}
		

Crossrefs

A304711 is the not necessarily odd version, with squarefree case A302797.
A337694 is a pairwise non-coprime instead of pairwise coprime version.
A337984 is the squarefree case.
A338315 counts the partitions with these Heinz numbers.
A338316 considers singletons coprime.
A007359 counts partitions into singleton or pairwise coprime parts with no 1's, with Heinz numbers A302568.
A304709 counts partitions whose distinct parts are pairwise coprime.
A327516 counts pairwise coprime partitions, with Heinz numbers A302696.
A337462 counts pairwise coprime compositions, ranked by A333227.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime, ranked by A333228.
A337667 counts pairwise non-coprime compositions, ranked by A337666.
A337697 counts pairwise coprime compositions with no 1's.
A318717 counts pairwise non-coprime strict partitions, with Heinz numbers A318719.

Programs

  • Mathematica
    Select[Range[1,100,2],CoprimeQ@@Union[PrimePi/@First/@FactorInteger[#]]&]
Showing 1-10 of 12 results. Next