cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A318717 Number of strict integer partitions of n in which no two parts are relatively prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 1, 5, 1, 5, 4, 6, 1, 10, 1, 11, 6, 12, 1, 19, 3, 18, 8, 23, 1, 36, 2, 32, 13, 38, 7, 57, 2, 54, 19, 68, 3, 95, 3, 90, 33, 104, 3, 148, 7, 149, 40, 166, 5, 230, 17, 226, 56, 256, 6, 360, 9, 340, 84, 390, 25, 527, 11, 513, 109
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Examples

			The a(20) = 11 partitions:
  (20),
  (12,8), (14,6), (15,5), (16,4), (18,2),
  (10,6,4), (10,8,2), (12,6,2), (14,4,2),
  (8,6,4,2).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,And@@(GCD[##]>1&)@@@Select[Tuples[#,2],Less@@#&]]&]],{n,30}]

Extensions

a(51)-a(69) from Alois P. Heinz, Sep 02 2018

A318716 Heinz numbers of strict integer partitions with relatively prime parts in which no two parts are relatively prime.

Original entry on oeis.org

2, 17719, 40807, 43381, 50431, 74269, 83143, 101543, 105703, 116143, 121307, 123469, 139919, 140699, 142883, 171613, 181831, 185803, 191479, 203557, 205813, 211381, 213239, 215267, 219271, 246703, 249587, 249899, 279371, 286897, 289007, 296993, 300847, 303949
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of strict integer partitions with Heinz numbers in the sequence begins: (1), (15,10,6), (21,14,6), (20,15,6), (15,12,10), (45,10,6), (18,15,10).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100000],With[{m=PrimePi/@FactorInteger[#][[All,1]]},And[SquareFreeQ[#],GCD@@m==1,And@@(GCD[##]>1&)@@@Select[Tuples[m,2],Less@@#&]]]&]

A303138 Regular triangle where T(n,k) is the number of strict integer partitions of n with greatest common divisor k.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 4, 0, 0, 0, 0, 0, 1, 4, 1, 0, 0, 0, 0, 0, 1, 6, 0, 1, 0, 0, 0, 0, 0, 1, 7, 2, 0, 0, 0, 0, 0, 0, 0, 1, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 10, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 17, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 23, 0, 2, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 19 2018

Keywords

Examples

			Triangle begins:
01:   1
02:   0  1
03:   1  0  1
04:   1  0  0  1
05:   2  0  0  0  1
06:   2  1  0  0  0  1
07:   4  0  0  0  0  0  1
08:   4  1  0  0  0  0  0  1
09:   6  0  1  0  0  0  0  0  1
10:   7  2  0  0  0  0  0  0  0  1
11:  11  0  0  0  0  0  0  0  0  0  1
12:  10  2  1  1  0  0  0  0  0  0  0  1
13:  17  0  0  0  0  0  0  0  0  0  0  0  1
14:  17  4  0  0  0  0  0  0  0  0  0  0  0  1
15:  23  0  2  0  1  0  0  0  0  0  0  0  0  0  1
The strict partitions counted in row 12 are the following.
T(12,1) = 10: (11,1) (9,2,1) (8,3,1) (7,5) (7,4,1) (7,3,2) (6,5,1) (6,3,2,1) (5,4,3) (5,4,2,1)
T(12,2) = 2:  (10,2) (6,4,2)
T(12,3) = 1:  (9,3)
T(12,4) = 1:  (8,4)
T(12,12) = 1: (12)
		

Crossrefs

First column is A078374. Second column at even indices is same as first column. Row sums are A000009. Row sums with first column removed are A303280.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&GCD@@#===k&]],{n,15},{k,n}]

Formula

If k divides n, T(n,k) = A078374(n/k); otherwise T(n,k) = 0.

A366852 Number of integer partitions of n into odd parts with a common divisor > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 4, 0, 1, 4, 1, 2, 6, 1, 1, 6, 3, 1, 8, 2, 1, 13, 1, 0, 13, 1, 7, 15, 1, 1, 19, 6, 1, 25, 1, 2, 33, 1, 1, 32, 5, 10, 39, 2, 1, 46, 14, 6, 55, 1, 1, 77, 1, 1, 82, 0, 20, 92, 1, 2, 105, 31, 1, 122, 1, 1, 166, 2, 16, 168
Offset: 0

Views

Author

Gus Wiseman, Nov 01 2023

Keywords

Examples

			The a(n) partitions for n = 3, 9, 15, 21, 25, 27:
(3)  (9)      (15)         (21)             (25)         (27)
     (3,3,3)  (5,5,5)      (7,7,7)          (15,5,5)     (9,9,9)
              (9,3,3)      (9,9,3)          (5,5,5,5,5)  (15,9,3)
              (3,3,3,3,3)  (15,3,3)                      (21,3,3)
                           (9,3,3,3,3)                   (9,9,3,3,3)
                           (3,3,3,3,3,3,3)               (15,3,3,3,3)
                                                         (9,3,3,3,3,3,3)
                                                         (3,3,3,3,3,3,3,3,3)
		

Crossrefs

Allowing even parts gives A018783, complement A000837.
For parts > 1 instead of gcd > 1 we have A087897.
For gcd = 1 instead of gcd > 1 we have A366843.
The strict case is A366750, with evens A303280.
The strict complement is A366844, with evens A078374.
A000041 counts integer partitions, strict A000009 (also into odd parts).
A000700 counts strict partitions into odd parts.
A113685 counts partitions by sum of odd parts, rank statistic A366528.
A168532 counts partitions by gcd.
A366842 counts partitions whose odd parts have a common divisor > 1.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@OddQ/@#&&GCD@@#>1&]],{n,15}]
  • Python
    from math import gcd
    from sympy.utilities.iterables import partitions
    def A366852(n): return sum(1 for p in partitions(n) if all(d&1 for d in p) and gcd(*p)>1) # Chai Wah Wu, Nov 02 2023

Extensions

More terms from Chai Wah Wu, Nov 02 2023
a(0)=0 prepended by Alois P. Heinz, Jan 11 2024

A331887 Number of partitions of n into distinct parts having a common factor > 1 with n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 3, 1, 5, 1, 5, 4, 6, 1, 11, 1, 11, 6, 12, 1, 23, 3, 18, 8, 23, 1, 69, 1, 32, 13, 38, 7, 84, 1, 54, 19, 79, 1, 224, 1, 90, 46, 104, 1, 264, 5, 187, 39, 166, 1, 449, 14, 251, 55, 256, 1, 1374, 1, 340, 111, 390, 20, 1692, 1, 513, 105, 1610
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 30 2020

Keywords

Examples

			a(12) = 5 because we have [12], [10, 2], [9, 3], [8, 4] and [6, 4, 2].
		

Crossrefs

Cf. A036998, A121998, A175787 (positions of 1's), A303280, A331885, A331888.

Programs

  • Maple
    a:= proc(m) option remember; local b; b:=
          proc(n, i) option remember; `if`(i*(i+1)/21, b(n-i, min(i-1, n-i)), 0)+b(n, i-1)))
          end; forget(b); b(m$2)
        end:
    seq(a(n), n=0..82);  # Alois P. Heinz, Jan 30 2020
  • Mathematica
    Table[SeriesCoefficient[Product[(1 + Boole[GCD[k, n] > 1] x^k), {k, 1, n}], {x, 0, n}], {n, 0, 70}]
  • PARI
    A331887(n) = { my(p = Ser(1, 'x, 1+n)); for(k=2, n, if(gcd(n,k)>1, p *= (1 + 'x^k))); polcoef(p, n); }; \\ Antti Karttunen, Jan 25 2025

Formula

a(n) = [x^n] Product_{k: gcd(n,k) > 1} (1 + x^k).

A318718 Heinz numbers of strict integer partitions with a common divisor > 1.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 21, 23, 29, 31, 37, 39, 41, 43, 47, 53, 57, 59, 61, 65, 67, 71, 73, 79, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 127, 129, 131, 133, 137, 139, 149, 151, 157, 159, 163, 167, 173, 179, 181, 183, 185, 191, 193, 197, 199
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Crossrefs

Programs

  • Mathematica
    Select[Range[200],And[SquareFreeQ[#],GCD@@PrimePi/@FactorInteger[#][[All,1]]>1]&]

A319300 Irregular triangle where T(n,k) is the number of strict integer partitions of n with GCD equal to the k-th divisor of n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 2, 1, 0, 1, 4, 1, 4, 1, 0, 1, 6, 1, 1, 7, 2, 0, 1, 11, 1, 10, 2, 1, 1, 0, 1, 17, 1, 17, 4, 0, 1, 23, 2, 1, 1, 26, 4, 1, 0, 1, 37, 1, 36, 6, 2, 1, 0, 1, 53, 1, 53, 7, 2, 1, 0, 1, 70, 4, 1, 1, 77, 11, 0, 1, 103, 1, 103, 10, 4, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2018

Keywords

Examples

			Triangle begins:
   1
   0  1
   1  1
   1  0  1
   2  1
   2  1  0  1
   4  1
   4  1  0  1
   6  1  1
   7  2  0  1
  11  1
  10  2  1  1  0  1
  17  1
  17  4  0  1
  23  2  1  1
  26  4  1  0  1
  37  1
  36  6  2  1  0  1
  53  1
  53  7  2  1  0  1
		

Crossrefs

A regular version is A303138. Row lengths are A000005. Row sums are A000009. First column is A078374.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,GCD@@#==k]&]],{n,20},{k,Divisors[n]}]

Formula

T(n,k) = A078374(n/A027750(n,k)).

A338554 Number of non-constant integer partitions of n whose parts have a common divisor > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 5, 0, 9, 0, 13, 6, 18, 0, 33, 0, 40, 14, 54, 0, 87, 5, 99, 27, 133, 0, 211, 0, 226, 55, 295, 18, 443, 0, 488, 100, 637, 0, 912, 0, 1000, 198, 1253, 0, 1775, 13, 1988, 296, 2434, 0, 3358, 59, 3728, 489, 4563, 0, 6241, 0, 6840, 814
Offset: 0

Views

Author

Gus Wiseman, Nov 07 2020

Keywords

Examples

			The a(6) = 2 through a(15) = 6 partitions (empty columns indicated by dots, A = 10, B = 11, C = 12):
  (42)  .  (62)   (63)  (64)    .  (84)     .  (86)      (96)
           (422)        (82)       (93)        (A4)      (A5)
                        (442)      (A2)        (C2)      (C3)
                        (622)      (633)       (644)     (663)
                        (4222)     (642)       (662)     (933)
                                   (822)       (842)     (6333)
                                   (4422)      (A22)
                                   (6222)      (4442)
                                   (42222)     (6422)
                                               (8222)
                                               (44222)
                                               (62222)
                                               (422222)
		

Crossrefs

A046022 lists positions of zeros.
A082023(n) - A059841(n) is the 2-part version, n > 2.
A303280(n) - 1 is the strict case (n > 1).
A338552 lists the Heinz numbers of these partitions.
A338553 counts the complement, with Heinz numbers A338555.
A000005 counts constant partitions, with Heinz numbers A000961.
A000837 counts relatively prime partitions, with Heinz numbers A289509.
A018783 counts non-relatively prime partitions (ordered: A178472), with Heinz numbers A318978.
A282750 counts relatively prime partitions by sum and length.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!SameQ@@#&&GCD@@#>1&]],{n,0,30}]

Formula

For n > 0, a(n) = A018783(n) - A000005(n) + 1.

A366750 Number of strict integer partitions of n into odd parts with a common divisor > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 2, 1, 0, 2, 1, 1, 3, 1, 0, 2, 0, 1, 3, 1, 0, 3, 2, 1, 4, 1, 1, 5, 0, 1, 5, 1, 2, 5, 1, 1, 5, 2, 2, 6, 0, 1, 9, 1, 0, 9, 0, 3, 9, 1, 1, 9, 5, 1, 11, 1, 0, 15, 1, 2, 13, 1, 5, 14, 0, 1, 18
Offset: 0

Views

Author

Gus Wiseman, Nov 01 2023

Keywords

Examples

			The a(n) partitions for n = 3, 24, 30, 42, 45, 57, 60:
  (3)  (15,9)  (21,9)  (33,9)   (45)       (57)       (51,9)
       (21,3)  (25,5)  (35,7)   (33,9,3)   (45,9,3)   (55,5)
               (27,3)  (39,3)   (21,15,9)  (27,21,9)  (57,3)
                       (27,15)  (25,15,5)  (33,15,9)  (33,27)
                                (27,15,3)  (33,21,3)  (35,25)
                                           (39,15,3)  (39,21)
                                                      (45,15)
                                                      (27,21,9,3)
                                                      (33,15,9,3)
		

Crossrefs

This is the case of A000700 with a common divisor.
Including evens gives A303280.
The complement is counted by A366844, non-strict version A366843.
The non-strict version is A366852, with evens A018783.
A000041 counts integer partitions, strict A000009 (also into odds).
A051424 counts pairwise coprime partitions, for odd parts A366853.
A113685 counts partitions by sum of odd parts, rank statistic A366528.
A168532 counts partitions by gcd.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], And@@OddQ/@#&&UnsameQ@@#&&GCD@@#>1&]], {n,0,30}]
  • Python
    from math import gcd
    from sympy.utilities.iterables import partitions
    def A366750(n): return sum(1 for p in partitions(n) if all(d==1 for d in p.values()) and all(d&1 for d in p) and gcd(*p)>1) # Chai Wah Wu, Nov 02 2023

Extensions

More terms from Chai Wah Wu, Nov 02 2023
Showing 1-9 of 9 results.