cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A007360 Number of partitions of n into distinct and pairwise relatively prime parts.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 8, 9, 10, 11, 10, 13, 17, 19, 21, 22, 21, 24, 32, 37, 37, 38, 40, 45, 55, 65, 69, 66, 64, 75, 86, 100, 113, 107, 106, 122, 145, 165, 174, 167, 162, 179, 222, 253, 255, 255, 255, 273, 328, 373, 376, 369, 377, 406, 476, 553, 569, 537, 529
Offset: 1

Views

Author

N. J. A. Sloane and Mira Bernstein, following a suggestion from Marc LeBrun

Keywords

Examples

			From _Gus Wiseman_, Sep 23 2019: (Start)
The a(1) = 1 through a(10) = 6 partitions (A = 10):
  (1)  (2)  (3)   (4)   (5)   (6)    (7)   (8)    (9)    (A)
            (21)  (31)  (32)  (51)   (43)  (53)   (54)   (73)
                        (41)  (321)  (52)  (71)   (72)   (91)
                                     (61)  (431)  (81)   (532)
                                           (521)  (531)  (541)
                                                         (721)
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Number of partitions of n into relatively prime parts = A000837.
The non-strict case is A051424.
Strict relatively prime partitions are A078374.

Programs

  • Mathematica
    $RecursionLimit = 1000; b[n_, i_, s_] := b[n, i, s] = Module[{f}, If[n == 0 || i == 1, 1, If[i<2, 0, f = FactorInteger[i][[All, 1]]; b[n, i-1, Select[s, #Jean-François Alcover, Mar 20 2014, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],Length[#]==1||UnsameQ@@#&&CoprimeQ@@Union[#]&]],{n,0,30}] (* Gus Wiseman, Sep 23 2019 *)

Formula

a(n) = A051424(n)-A051424(n-2). - Vladeta Jovovic, Dec 11 2004

Extensions

More precise definition from Vladeta Jovovic, Dec 11 2004
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 13 2005

A318717 Number of strict integer partitions of n in which no two parts are relatively prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 1, 5, 1, 5, 4, 6, 1, 10, 1, 11, 6, 12, 1, 19, 3, 18, 8, 23, 1, 36, 2, 32, 13, 38, 7, 57, 2, 54, 19, 68, 3, 95, 3, 90, 33, 104, 3, 148, 7, 149, 40, 166, 5, 230, 17, 226, 56, 256, 6, 360, 9, 340, 84, 390, 25, 527, 11, 513, 109
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Examples

			The a(20) = 11 partitions:
  (20),
  (12,8), (14,6), (15,5), (16,4), (18,2),
  (10,6,4), (10,8,2), (12,6,2), (14,4,2),
  (8,6,4,2).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,And@@(GCD[##]>1&)@@@Select[Tuples[#,2],Less@@#&]]&]],{n,30}]

Extensions

a(51)-a(69) from Alois P. Heinz, Sep 02 2018

A318715 Number of strict integer partitions of n with relatively prime parts in which no two parts are relatively prime.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 1, 0, 4, 0, 3, 0, 1, 0, 5, 0, 8, 0, 2, 0, 5, 0, 10, 0, 4, 0, 13, 0, 15, 0, 3, 1, 13, 0, 19, 0, 9, 1, 24, 0, 20
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Examples

			The a(67) = 10 strict integer partitions are
  (45,12,10) (42,15,10) (40,15,12) (33,22,12) (28,21,18)
  (36,15,10,6) (30,15,12,10) (28,21,12,6) (24,18,15,10)
  (24,15,12,10,6).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,GCD@@#==1,And@@(GCD[##]>1&)@@@Select[Tuples[#,2],Less@@#&]]&]],{n,50}]

Extensions

a(71)-a(85) from Robert Price, Sep 08 2018

A318719 Heinz numbers of strict integer partitions in which no two parts are relatively prime.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 21, 23, 29, 31, 37, 39, 41, 43, 47, 53, 57, 59, 61, 65, 67, 71, 73, 79, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 127, 129, 131, 133, 137, 139, 149, 151, 157, 159, 163, 167, 173, 179, 181, 183, 185, 191, 193, 197
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Crossrefs

Programs

  • Mathematica
    Select[Range[200],And[SquareFreeQ[#],And@@(GCD[##]>1&)@@@Select[Tuples[PrimePi/@FactorInteger[#][[All,1]],2],Less@@#&]]&]

A303282 Numbers whose prime indices have no common divisor other than 1 but are not pairwise coprime.

Original entry on oeis.org

18, 36, 42, 45, 50, 54, 72, 75, 78, 84, 90, 98, 99, 100, 105, 108, 114, 126, 130, 135, 144, 150, 153, 156, 162, 168, 174, 175, 180, 182, 195, 196, 198, 200, 207, 210, 216, 222, 225, 228, 230, 231, 234, 242, 245, 250, 252, 258, 260, 266, 270, 275, 279, 285, 288
Offset: 1

Views

Author

Gus Wiseman, Apr 20 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. Two or more numbers are coprime if no pair of them has a common divisor other than 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of integer partitions whose Heinz numbers belong to this sequence begins (221), (2211), (421), (322), (331), (2221), (22111), (332), (621), (4211), (3221), (441), (522), (3311), (432), (22211).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[400],!CoprimeQ@@primeMS[#]&&GCD@@primeMS[#]===1&]

A303139 Number of integer partitions of n with at least two but not all parts having a common divisor greater than 1.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 5, 6, 13, 17, 33, 37, 68, 82, 125, 159, 237, 278, 409, 491, 674, 830, 1121, 1329, 1781, 2144, 2770, 3345, 4299, 5086, 6507, 7752, 9687, 11571, 14378, 16985, 21039, 24876, 30379, 35924, 43734, 51320, 62238, 73068, 87747, 103021, 123347, 143955
Offset: 1

Views

Author

Gus Wiseman, Apr 19 2018

Keywords

Examples

			The a(7) = 5 partitions are (421), (331), (322), (2221), (22111).
		

Crossrefs

Programs

  • Mathematica
    Table[Select[IntegerPartitions[n],!CoprimeQ@@#&&GCD@@#===1&]//Length,{n,30}]

A318716 Heinz numbers of strict integer partitions with relatively prime parts in which no two parts are relatively prime.

Original entry on oeis.org

2, 17719, 40807, 43381, 50431, 74269, 83143, 101543, 105703, 116143, 121307, 123469, 139919, 140699, 142883, 171613, 181831, 185803, 191479, 203557, 205813, 211381, 213239, 215267, 219271, 246703, 249587, 249899, 279371, 286897, 289007, 296993, 300847, 303949
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of strict integer partitions with Heinz numbers in the sequence begins: (1), (15,10,6), (21,14,6), (20,15,6), (15,12,10), (45,10,6), (18,15,10).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100000],With[{m=PrimePi/@FactorInteger[#][[All,1]]},And[SquareFreeQ[#],GCD@@m==1,And@@(GCD[##]>1&)@@@Select[Tuples[m,2],Less@@#&]]]&]

A303283 Squarefree numbers whose prime indices have no common divisor other than 1 but are not pairwise coprime.

Original entry on oeis.org

42, 78, 105, 114, 130, 174, 182, 195, 210, 222, 230, 231, 258, 266, 285, 318, 345, 357, 366, 370, 390, 406, 426, 429, 435, 455, 462, 470, 474, 483, 494, 518, 534, 546, 555, 570, 598, 602, 606, 610, 627, 638, 642, 645, 651, 663, 665, 678, 690, 705, 714, 715
Offset: 1

Views

Author

Gus Wiseman, Apr 20 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. Two or more numbers are coprime if no pair of them has a common divisor other than 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of strict integer partitions whose Heinz numbers belong to this sequence begins (4,2,1), (6,2,1), (4,3,2), (8,2,1), (6,3,1), (10,2,1), (6,4,1), (6,3,2), (4,3,2,1), (12,2,1), (9,3,1), (5,4,2), (14,2,1), (8,4,1), (8,3,2), (16,2,1), (9,3,2), (7,4,2), (18,2,1), (12,3,1), (6,3,2,1).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[400],SquareFreeQ[#]&&!CoprimeQ@@primeMS[#]&&GCD@@primeMS[#]===1&]

A337984 Heinz numbers of pairwise coprime integer partitions with no 1's, where a singleton is not considered coprime.

Original entry on oeis.org

15, 33, 35, 51, 55, 69, 77, 85, 93, 95, 119, 123, 141, 143, 145, 155, 161, 165, 177, 187, 201, 205, 209, 215, 217, 219, 221, 249, 253, 255, 265, 287, 291, 295, 309, 323, 327, 329, 335, 341, 355, 381, 385, 391, 395, 403, 407, 411, 413, 415, 437, 447, 451, 465
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2020

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
     15: {2,3}     155: {3,11}     265: {3,16}
     33: {2,5}     161: {4,9}      287: {4,13}
     35: {3,4}     165: {2,3,5}    291: {2,25}
     51: {2,7}     177: {2,17}     295: {3,17}
     55: {3,5}     187: {5,7}      309: {2,27}
     69: {2,9}     201: {2,19}     323: {7,8}
     77: {4,5}     205: {3,13}     327: {2,29}
     85: {3,7}     209: {5,8}      329: {4,15}
     93: {2,11}    215: {3,14}     335: {3,19}
     95: {3,8}     217: {4,11}     341: {5,11}
    119: {4,7}     219: {2,21}     355: {3,20}
    123: {2,13}    221: {6,7}      381: {2,31}
    141: {2,15}    249: {2,23}     385: {3,4,5}
    143: {5,6}     253: {5,9}      391: {7,9}
    145: {3,10}    255: {2,3,7}    395: {3,22}
		

Crossrefs

A005117 is a superset.
A337485 counts these partitions.
A302568 considers singletons to be coprime.
A304711 allows 1's, with squarefree version A302797.
A337694 is the pairwise non-coprime instead of pairwise coprime version.
A007359 counts partitions into singleton or pairwise coprime parts with no 1's
A101268 counts pairwise coprime or singleton compositions, ranked by A335235.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions, ranked by A302696.
A337462 counts pairwise coprime compositions, ranked by A333227.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime, ranked by A333228.
A337667 counts pairwise non-coprime compositions, ranked by A337666.
A337697 counts pairwise coprime compositions with no 1's.
A337983 counts pairwise non-coprime strict compositions, with unordered version A318717 ranked by A318719.

Programs

  • Mathematica
    Select[Range[1,100,2],SquareFreeQ[#]&&CoprimeQ@@PrimePi/@First/@FactorInteger[#]&]

Formula

A318720 Numbers k such that there exists a strict relatively prime factorization of k in which no pair of factors is relatively prime.

Original entry on oeis.org

900, 1764, 1800, 2700, 3528, 3600, 4356, 4500, 4900, 5292, 5400, 6084, 6300, 7056, 7200, 8100, 8712, 8820, 9000, 9800, 9900, 10404, 10584, 10800, 11025, 11700, 12100, 12168, 12348, 12600, 12996, 13068, 13500, 14112, 14400, 14700, 15300, 15876, 16200, 16900
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Comments

From Amiram Eldar, Nov 01 2020: (Start)
Also, numbers with more than two non-unitary prime divisors, i.e., numbers k such that A056170(k) > 2, or equivalently, numbers divisible by the squares of three distinct primes.
The complement of the union of A005117, A190641 and A338539.
The asymptotic density of this sequence is 1 - 6/Pi^2 - (6/Pi^2)*A154945 - (3/Pi^2)*(A154945^2 - A324833) = 0.0033907041... (End)

Examples

			900 is in the sequence because the factorization 900 = (6*10*15) is relatively prime (since the GCD of (6,10,15) is 1) but each of the pairs (6,10), (6,15), (10,15) has a common divisor > 1. Larger examples are:
1800 = (6*15*20) = (10*12*15).
9900 = (6*10*165) = (6*15*110) = (10*15*66).
5400 = (6*20*45) = (10*12*45) = (10*15*36) = (15*18*20).
60 is not in the sequence because all its possible factorizations (4 * 15, 3 * 4 * 5, etc.) contain at least one pair that is coprime, if not more than one prime.
		

Crossrefs

Programs

  • Mathematica
    strfacs[n_] := If[n <= 1, {{}}, Join@@Table[(Prepend[#1, d] &)/@Select[strfacs[n/d], Min@@#1 > d &], {d, Rest[Divisors[n]]}]]; Select[Range[10000], Function[n, Select[strfacs[n], And[GCD@@# == 1, And@@(GCD[##] > 1 &)@@@Select[Tuples[#, 2], Less@@# &]] &] != {}]]
    Select[Range[20000], Count[FactorInteger[#][[;;,2]], ?(#1 > 1 &)] > 2 &] (* _Amiram Eldar, Nov 01 2020 *)
Showing 1-10 of 15 results. Next