A047968
a(n) = Sum_{d|n} p(d), where p(d) = A000041 = number of partitions of d.
Original entry on oeis.org
1, 3, 4, 8, 8, 17, 16, 30, 34, 52, 57, 99, 102, 153, 187, 261, 298, 432, 491, 684, 811, 1061, 1256, 1696, 1966, 2540, 3044, 3876, 4566, 5846, 6843, 8610, 10203, 12610, 14906, 18491, 21638, 26508, 31290, 38044, 44584, 54133, 63262, 76241
Offset: 1
For n = 10 the divisors of 10 are 1, 2, 5, 10, hence the partition numbers of the divisors of 10 are 1, 2, 7, 42, so a(10) = 1 + 2 + 7 + 42 = 52. - _Omar E. Pol_, Feb 26 2014
From _Gus Wiseman_, Sep 16 2018: (Start)
The a(6) = 17 constant multiset partitions:
(111111) (111)(111) (11)(11)(11) (1)(1)(1)(1)(1)(1)
(111222) (12)(12)(12)
(111122) (112)(112)
(112233) (123)(123)
(111112)
(111123)
(111223)
(111234)
(112234)
(112345)
(123456)
(End)
-
with(combinat): with(numtheory): a := proc(n) c := 0: l := sort(convert(divisors(n), list)): for i from 1 to nops(l) do c := c+numbpart(l[i]) od: RETURN(c): end: for j from 1 to 60 do printf(`%d, `, a(j)) od: # Zerinvary Lajos, Apr 14 2007
-
a[n_] := Sum[ PartitionsP[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 44}] (* Jean-François Alcover, Oct 03 2013 *)
A341450
Number of strict integer partitions of n that are empty or have smallest part not dividing all the others.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 2, 1, 3, 3, 6, 3, 9, 9, 12, 12, 20, 18, 28, 27, 37, 42, 55, 51, 74, 80, 98, 105, 136, 137, 180, 189, 232, 255, 308, 320, 403, 434, 512, 551, 668, 706, 852, 915, 1067, 1170, 1370, 1453, 1722, 1860, 2145, 2332, 2701, 2899, 3355, 3626, 4144
Offset: 0
The a(0) = 1 through a(15) = 12 strict partitions (empty columns indicated by dots, 0 represents the empty partition, A..D = 10..13):
0 . . . . 32 . 43 53 54 64 65 75 76 86 87
52 72 73 74 543 85 95 96
432 532 83 732 94 A4 B4
92 A3 B3 D2
542 B2 653 654
632 643 743 753
652 752 762
742 932 843
832 5432 852
942
A32
6432
The Heinz numbers of these partitions are
A339562 (non-strict:
A342193).
The case with greatest part not divisible by all others is
A343379.
The case with greatest part divisible by all others is
A343380.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
-
Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}]
A338470
Number of integer partitions of n with no part dividing all the others.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 3, 2, 5, 5, 13, 7, 23, 21, 33, 35, 65, 55, 104, 97, 151, 166, 252, 235, 377, 399, 549, 591, 846, 858, 1237, 1311, 1749, 1934, 2556, 2705, 3659, 3991, 5090, 5608, 7244, 7841, 10086, 11075, 13794, 15420, 19195, 21003, 26240, 29089, 35483
Offset: 0
The a(5) = 1 through a(12) = 7 partitions (empty column indicated by dot):
(32) . (43) (53) (54) (64) (65) (75)
(52) (332) (72) (73) (74) (543)
(322) (432) (433) (83) (552)
(522) (532) (92) (732)
(3222) (3322) (443) (4332)
(533) (5322)
(542) (33222)
(632)
(722)
(3332)
(4322)
(5222)
(32222)
The Heinz numbers of these partitions are
A342193.
The case with maximum part not divisible by all the others is
A343342.
The case with maximum part divisible by all the others is
A343344.
A000070 counts partitions with a selected part.
A001787 count normal multisets with a selected position.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
A276024 counts positive subset sums.
-
Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}]
(* Second program: *)
a[n_] := If[n == 0, 1, PartitionsP[n] - Sum[PartitionsP[d-1], {d, Divisors[n]}]];
a /@ Range[0, 50] (* Jean-François Alcover, May 09 2021, after Andrew Howroyd *)
-
a(n)={numbpart(n) - if(n, sumdiv(n, d, numbpart(d-1)))} \\ Andrew Howroyd, Mar 25 2021
A168016
Triangle T(n,k) read by rows in which row n list the number of partitions of n into parts divisible by k for k=n,n-1,...,1.
Original entry on oeis.org
1, 1, 2, 1, 0, 3, 1, 0, 2, 5, 1, 0, 0, 0, 7, 1, 0, 0, 2, 3, 11, 1, 0, 0, 0, 0, 0, 15, 1, 0, 0, 0, 2, 0, 5, 22, 1, 0, 0, 0, 0, 0, 3, 0, 30, 1, 0, 0, 0, 0, 2, 0, 0, 7, 42, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, 1, 0, 0, 0, 0, 0, 2, 0, 3, 5, 11, 77, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 101
Offset: 1
Triangle begins:
==============================================
.... k: 12 11 10. 9. 8. 7. 6. 5. 4. 3.. 2.. 1.
==============================================
n=1 ....................................... 1,
n=2 ................................... 1, 2,
n=3 ............................... 1, 0, 3,
n=4 ............................ 1, 0, 2, 5,
n=5 ......................... 1, 0, 0, 0, 7,
n=6 ...................... 1, 0, 0, 2, 3, 11,
n=7 ................... 1, 0, 0, 0, 0, 0, 15,
n=8 ................ 1, 0, 0, 0, 2, 0, 5, 22,
n=9 ............. 1, 0, 0, 0, 0, 0, 3, 0, 30,
n=10 ......... 1, 0, 0, 0, 0, 2, 0, 0, 7, 42,
n=11 ...... 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56,
n=12 ... 1, 0, 0, 0, 0, 0, 2, 0, 3, 5, 11, 77,
...
-
T[n_, k_]:= If[IntegerQ[n/(n-k+1)], PartitionsP[n/(n-k+1)], 0];
Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jan 12 2023 *)
-
def T(n,k): return number_of_partitions(n/(n-k+1)) if (n%(n-k+1))==0 else 0
flatten([[T(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jan 12 2023
Showing 1-4 of 4 results.
Comments