A168020 Square array read by antidiagonals in which row n lists the number of partitions of n into parts divisible by k.
1, 2, 0, 3, 1, 0, 5, 0, 0, 0, 7, 2, 1, 0, 0, 11, 0, 0, 0, 0, 0, 15, 3, 0, 1, 0, 0, 0, 22, 0, 2, 0, 0, 0, 0, 0, 30, 5, 0, 0, 1, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, 7, 3, 2, 0, 1, 0, 0, 0, 0, 0, 77, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 101, 11, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
The array, A(n, k), begins: n | k = 1 2 3 4 5 6 7 8 9 10 11 12 ---+-------------------------------------------------- 1 | 1 0 0 0 0 0 0 0 0 0 0 0 2 | 2 1 0 0 0 0 0 0 0 0 0 0 3 | 3 0 1 0 0 0 0 0 0 0 0 0 4 | 5 2 0 1 0 0 0 0 0 0 0 0 5 | 7 0 0 0 1 0 0 0 0 0 0 0 6 | 11 3 2 0 0 1 0 0 0 0 0 0 7 | 15 0 0 0 0 0 1 0 0 0 0 0 8 | 22 5 0 2 0 0 0 1 0 0 0 0 9 | 30 0 3 0 0 0 0 0 1 0 0 0 10 | 42 7 0 0 2 0 0 0 0 1 0 0 11 | 56 0 0 0 0 0 0 0 0 0 1 0 12 | 77 11 5 3 0 2 0 0 0 0 0 1 ... Antidiagonal triangle, T(n,k), begins as: 1; 2, 0; 3, 1, 0; 5, 0, 0, 0; 7, 2, 1, 0, 0; 11, 0, 0, 0, 0, 0; 15, 3, 0, 1, 0, 0, 0; 22, 0, 2, 0, 0, 0, 0, 0; 30, 5, 0, 0, 1, 0, 0, 0, 0; 42, 0, 0, 0, 0, 0, 0, 0, 0, 0;
Links
- G. C. Greubel, Antidiagonals n = 1..50, flattened
- Omar E. Pol, Illustration of the shell model of partitions (2D and 3D)
- Omar E. Pol, Illustration of the shell model of partitions (2D view)
- Omar E. Pol, Illustration of the shell model of partitions (3D view)
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= If[IntegerQ[(n-k+1)/k], PartitionsP[(n-k+1)/k], 0]; Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jan 12 2023 *)
-
SageMath
def A168020(n,k): return number_of_partitions((n-k+1)/k) if ((n-k+1)%k)==0 else 0 flatten([[A168020(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jan 12 2023
Formula
Extensions
Edited by Omar E. Pol, Nov 21 2009
Edited by Charles R Greathouse IV, Mar 23 2010
Edited by Max Alekseyev, May 07 2010
Comments