cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168021 Triangle T(n,k) read by rows in which row n lists the number of partitions of n into parts divisible by k.

Original entry on oeis.org

1, 2, 1, 3, 0, 1, 5, 2, 0, 1, 7, 0, 0, 0, 1, 11, 3, 2, 0, 0, 1, 15, 0, 0, 0, 0, 0, 1, 22, 5, 0, 2, 0, 0, 0, 1, 30, 0, 3, 0, 0, 0, 0, 0, 1, 42, 7, 0, 0, 2, 0, 0, 0, 0, 1, 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 77, 11, 5, 3, 0, 2, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Omar E. Pol, Nov 20 2009, Nov 21 2009

Keywords

Comments

The row-reversed version is A168016.
Also see A168020.

Examples

			Triangle begins:
==============================================
...... k: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11 12
==============================================
n=1 ..... 1,
n=2 ..... 2, 1,
n=3 ..... 3, 0, 1,
n=4 ..... 5, 2, 0, 1,
n=5 ..... 7, 0, 0, 0, 1,
n=6 .... 11, 3, 2, 0, 0, 1,
n=7 .... 15, 0, 0, 0, 0, 0, 1,
n=8 .... 22, 5, 0, 2, 0, 0, 0, 1,
n=9 .... 30, 0, 3, 0, 0, 0, 0, 0, 1,
n=10 ... 42, 7, 0, 0, 2, 0, 0, 0, 0, 1,
n=11 ... 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
n=12 ... 77,11, 5, 3, 0, 2, 0, 0, 0, 0, 0, 1,
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= If[IntegerQ[n/k], PartitionsP[n/k], 0];
    Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jan 12 2023 *)
  • SageMath
    def A168021(n,k): return number_of_partitions(n/k) if (n%k)==0 else 0
    flatten([[A168021(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jan 12 2023

Formula

T(n,k) = A000041(n/k) if k|n, else T(n,k)=0.
Sum_{k=1..n} T(n, k) = A047968(n).
From G. C. Greubel, Jan 12 2023: (Start)
T(2*n, n) = 2*A000012(n).
T(2*n-1, n+1) = A000007(n-2). (End)

Extensions

Edited by Charles R Greathouse IV, Mar 23 2010