A168021 Triangle T(n,k) read by rows in which row n lists the number of partitions of n into parts divisible by k.
1, 2, 1, 3, 0, 1, 5, 2, 0, 1, 7, 0, 0, 0, 1, 11, 3, 2, 0, 0, 1, 15, 0, 0, 0, 0, 0, 1, 22, 5, 0, 2, 0, 0, 0, 1, 30, 0, 3, 0, 0, 0, 0, 0, 1, 42, 7, 0, 0, 2, 0, 0, 0, 0, 1, 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 77, 11, 5, 3, 0, 2, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
Triangle begins: ============================================== ...... k: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11 12 ============================================== n=1 ..... 1, n=2 ..... 2, 1, n=3 ..... 3, 0, 1, n=4 ..... 5, 2, 0, 1, n=5 ..... 7, 0, 0, 0, 1, n=6 .... 11, 3, 2, 0, 0, 1, n=7 .... 15, 0, 0, 0, 0, 0, 1, n=8 .... 22, 5, 0, 2, 0, 0, 0, 1, n=9 .... 30, 0, 3, 0, 0, 0, 0, 0, 1, n=10 ... 42, 7, 0, 0, 2, 0, 0, 0, 0, 1, n=11 ... 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, n=12 ... 77,11, 5, 3, 0, 2, 0, 0, 0, 0, 0, 1, ...
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- Omar E. Pol, Illustration of the shell model of partitions (2D and 3D)
- Omar E. Pol, Illustration of the shell model of partitions (2D view)
- Omar E. Pol, Illustration of the shell model of partitions (3D view)
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= If[IntegerQ[n/k], PartitionsP[n/k], 0]; Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jan 12 2023 *)
-
SageMath
def A168021(n,k): return number_of_partitions(n/k) if (n%k)==0 else 0 flatten([[A168021(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jan 12 2023
Formula
T(n,k) = A000041(n/k) if k|n, else T(n,k)=0.
Sum_{k=1..n} T(n, k) = A047968(n).
From G. C. Greubel, Jan 12 2023: (Start)
T(2*n, n) = 2*A000012(n).
T(2*n-1, n+1) = A000007(n-2). (End)
Extensions
Edited by Charles R Greathouse IV, Mar 23 2010
Comments