A277290
Prime-indexed primes p such that Lucas(p) is prime.
Original entry on oeis.org
5, 11, 17, 31, 41, 353, 617, 4787, 5851, 148091, 637751
Offset: 1
17 = A000040(7), with 7 itself being a prime, and A000032(17) = 3571, a prime, thus 17 is included in this sequence.
A168035
Primes p for which floor(p^phi) and floor(phi^p) are prime.
Original entry on oeis.org
2, 5, 7, 17, 61, 617, 7741, 10691
Offset: 1
-
$MaxExtraPrecision=8!; Select[Prime[Range[3*6! ]],PrimeQ[Floor[ #^GoldenRatio]]&&PrimeQ[Floor[GoldenRatio^# ]]&]
-
phi=(1+sqrt(5))/2; forprime(p=2, 1e3, if(isprime(floor(p^phi)) && isprime(floor(phi^p)), print1(p", "))) \\ Charles R Greathouse IV, Jul 29 2011
Showing 1-2 of 2 results.