A168556 Smallest primes p = p(k) with (p(k)+p(k+1)+p(k+2))/15 an integer.
3, 4691, 6397, 6911, 8893, 10181, 11833, 12113, 13063, 13267, 14251, 16661, 17851, 20563, 21341, 21881, 22229, 22877, 23339, 23633, 24859, 26561, 26591, 27337, 27361, 28151, 29531, 30029, 30211, 30881, 30983, 31271, 33961, 34439, 35227
Offset: 1
Keywords
Examples
(1) 3 + 5 + 7 = 15 * 1 => a(1)=3 for k=2. (2) 4691 + 4703 + 4721 = 14115 = 15 * 941 => a(2)=4691 for k=634. (3) 6397 + 6421 + 6427 = 19245 = 15 * 1283 => a(3)=6397 for k=834. (4) 8893 + 8923 + 8929 = 26745 = 15 * 1783 => a(5)=8893 for k=1108. (5) 23339 + 23357 + 23369 = 70065 = 15 * 4671 => a(19)=23339 for k=2603.
References
- Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications 2005
- Theo Kempermann, Zahlentheoretische Kostproben, Harri Deutsch, 2. aktualisierte Auflage 2005
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Select[Partition[Prime[Range[4000]],3,1],IntegerQ[Total[#]/15]&][[;;,1]] (* Harvey P. Dale, Jul 20 2025 *)
-
PARI
lista(nn) = {vp = primes(nn); for (k = 1, nn - 2, if ((vp[k] + vp[k+1] + vp[k+2]) % 15 == 0, print1(vp[k], ", ")););} \\ Michel Marcus, Aug 27 2013
Comments