A168128
Numbers Sum_(j=1..k) sigma(j) / sigma(k) when this expression is an integer.
Original entry on oeis.org
1, 2, 23, 247, 699, 55921, 70936, 152730, 478017, 4879815, 12909834588, 223070292558, 583407686653, 601718433498
Offset: 1
a(3)=23 because A024916(29) / A000203(29) = 690 / 30 = 23 is an integer, where 29 is A168127(3).
-
m=0; for(k=1, 11413204, s=sigma(k); m=m+s; if(m%s==0, print1(m/s ", "))) \\ Donovan Johnson, Oct 16 2013
A168129
Numbers sigma(k) when Sum_(j=1..k) sigma(j) / sigma(k) is an integer.
Original entry on oeis.org
1, 4, 30, 444, 1767, 86250, 97920, 185700, 584640, 21954842, 17654544432, 357550809280, 709346653572, 1061551370880
Offset: 1
a(3) = 30 because A024916(29) / A000203(29) = 690 / 30 = 23 is an integer, where 29 is A168127(3).
-
v=vector(10); c=0; m=0; for(k=1, 11413204, s=sigma(k); m=m+s; if(m%s==0, c++; v[c]=s)); v=vecsort(v); for(i=1, c, print1(v[i] ", ")) \\ Donovan Johnson, Oct 16 2013
A168130
Numbers Sum_(j=1..k) sigma(j) when Sum_(j=1..k) sigma(j) / sigma(k) is an integer.
Original entry on oeis.org
1, 8, 690, 109668, 1235133, 5475784320, 6118230000, 28361961000, 279467858880, 107135567314230, 227917248343616414016, 79758963630439261338240, 413838290195487519174516, 638755027963568013738240
Offset: 1
a(3)= 690 = A024916(29) because A024916(29) / A000203(29) = 690 / 30 = 23 is an integer, where 29 is A168127(3).
-
m=0; for(k=1, 11413204, s=sigma(k); m=m+s; if(m%s==0, print1(m ", "))) \\ Donovan Johnson, Oct 16 2013
A227904
Numbers k such that Sum_{j=1..k} antisigma(j) == 0 (mod sigma(k)).
Original entry on oeis.org
1, 2, 39, 78, 100, 126, 434, 501, 1313, 54111, 359466, 523219, 6601441, 8034674, 54092207, 64149290, 158882288, 3016740661, 20951813922, 52815759197, 120508871819
Offset: 1
Sum_{j=1..39} antisigma(j) = 9408, sigma(39) = 56 and 9408 mod 56 = 0, so 39 is a term.
Showing 1-4 of 4 results.
Comments