A168223 a(n) = A006369(n) - A006368(n).
0, 0, 0, 0, -1, 3, -5, 4, -1, -1, -2, 7, -10, 7, -2, -1, -3, 10, -15, 11, -3, -2, -4, 14, -20, 14, -4, -2, -5, 17, -25, 18, -5, -3, -6, 21, -30, 21, -6, -3, -7, 24, -35, 25, -7, -4, -8, 28, -40, 28, -8, -4, -9, 31, -45, 32, -9, -5, -10, 35, -50, 35, -10, -5, -11, 38, -55, 39
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for sequences related to 3x+1 (or Collatz) problem
- Index entries for linear recurrences with constant coefficients, signature (-2,-2,0,3,4,3,0,-2,-2,-1).
Programs
-
Haskell
a168223 n = a006369 n - a006368 n -- Reinhard Zumkeller, Mar 15 2014
-
Mathematica
LinearRecurrence[{-2,-2,0,3,4,3,0,-2,-2,-1},{0, 0, 0, 0, -1, 3, -5, 4, -1, -1},50] (* G. C. Greubel, Jul 16 2016 *)
Formula
a(12*n) = -10*n, a(12*n+1) = 7*n.
a(12*n+2) = -2*n, a(12*n+3) = -n.
a(12*n+4) = -2*n - 1, a(12*n+5) = 7*n + 3.
a(12*n+6) = -10*n - 5, a(12*n+7) = 7*n + 4.
a(12*n+8) = -2*n -1, a(12*n+9) = -n - 1.
a(12*n+10) = -2*n - 2, a(12*n+11) = 7*n + 7.
G.f.: -x^4*(x^2-x+1) / ((x-1)^2*(x+1)^2*(x^2+1)*(x^2+x+1)^2). - Colin Barker, Apr 04 2013
Comments