A168228 Coefficient triangle sequence of characteristic polynomials of a Fermat like matrix:M(n)=Pascal n-th matrix: F(n)=Inverse[Transpose[M(n)]].M(n).
1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 0, 1, 1, 1, -5, 10, -10, 5, -1, 1, -5, -4, 25, -4, -5, 1, 1, 15, 64, 50, -50, -64, -15, -1, 1, 15, 65, 66, 30, 66, 65, 15, 1, 1, -55, 455, -671, 1410, -1410, 671, -455, 55, -1, 1, -55, 1815, -4730, 11495, -7251, 11495, -4730, 1815, -55
Offset: 0
Examples
{1}, {1, -1}, {1, -1, 1}, {1, 1, -1, -1}, {1, 1, 0, 1, 1}, {1, -5, 10, -10, 5, -1}, {1, -5, -4, 25, -4, -5, 1}, {1, 15, 64, 50, -50, -64, -15, -1}, {1, 15, 65, 66, 30, 66, 65, 15, 1}, {1, -55, 455, -671, 1410, -1410, 671, -455, 55, -1}, {1, -55, 1815, -4730, 11495, -7251, 11495, -4730, 1815, -55, 1}, {1, 197, 4675, -33825, -54978, 99174, -99174, 54978, 33825, -4675, -197, -1}
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 172.
Crossrefs
Programs
-
Mathematica
Clear[T, M, F]; T[n_, m_] := If[n >= m, Binomial[n, m], 0]; M[n_] := Table[T[k, m], {k, 0, n}, {m, 0, n}]; F[n_] := Inverse[Transpose[M[n]]].M[n]; Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[F[n], x], x], {n, 0, 10}]]; Flatten[%]
Comments