A168235 1+5*n+7*n^2.
13, 39, 79, 133, 201, 283, 379, 489, 613, 751, 903, 1069, 1249, 1443, 1651, 1873, 2109, 2359, 2623, 2901, 3193, 3499, 3819, 4153, 4501, 4863, 5239, 5629, 6033, 6451, 6883, 7329, 7789, 8263, 8751, 9253, 9769, 10299, 10843, 11401, 11973, 12559, 13159, 13773
Offset: 1
Examples
When x = 2, f(x) = 7. Hence at n=1, f( x + f(x))/f(x) = 13 = a(1).
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[1+5n+7n^2,{n,60}] (* or *) LinearRecurrence[{3,-3,1},{13,39,79},60] (* Harvey P. Dale, Feb 07 2015 *)
-
PARI
a(n)=1+5*n+7*n^2 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(1)=13, a(2)=39, a(3)=79, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Feb 07 2015
From G. C. Greubel, Apr 09 2016: (Start)
G.f.: (1 + 10*x + 3*x^2)/(1-x)^3.
E.g.f.: (1 + 12*x + 7*x^2)*exp(x). (End)
Extensions
Edited, definition simplified, sequence extended beyond a(8) by R. J. Mathar, Nov 23 2009
Comments