cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168236 a(n) = (6*n - 3*(-1)^n - 1)/4.

Original entry on oeis.org

2, 2, 5, 5, 8, 8, 11, 11, 14, 14, 17, 17, 20, 20, 23, 23, 26, 26, 29, 29, 32, 32, 35, 35, 38, 38, 41, 41, 44, 44, 47, 47, 50, 50, 53, 53, 56, 56, 59, 59, 62, 62, 65, 65, 68, 68, 71, 71, 74, 74, 77, 77, 80, 80, 83, 83, 86, 86, 89, 89, 92, 92, 95, 95, 98, 98, 101, 101, 104, 104
Offset: 1

Views

Author

Vincenzo Librandi, Nov 21 2009

Keywords

Comments

Essentially the same as A168199. - Georg Fischer, Oct 14 2018

Crossrefs

Cf. A016789.

Programs

  • Magma
    [3*n/2-1/4-3*(-1)^n/4: n in [1..70]]; // Vincenzo Librandi, Sep 16 2013
  • Mathematica
    CoefficientList[Series[(2 + x^2) / ((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 16 2013 *)
    Table[(6*n - 3*(-1)^n - 1)/4, {n,1,50}] (* or *) LinearRecurrence[ {1,1, -1}, {2, 2, 5}, 50] (* G. C. Greubel, Jul 16 2016 *)

Formula

G.f.: x*(2 + x^2) / ( (1+x)*(x-1)^2 ).
a(n+1) = A016789(floor(n/2)).
a(n) = a(n-1) +a(n-2) -a(n-3). - Vincenzo Librandi, Sep 16 2013
E.g.f.: (1/4)*(-3 + 4*exp(x) + (6*x - 1)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 16 2016