A168240 a(n) = 13*n^2 + 7*n + 1.
21, 67, 139, 237, 361, 511, 687, 889, 1117, 1371, 1651, 1957, 2289, 2647, 3031, 3441, 3877, 4339, 4827, 5341, 5881, 6447, 7039, 7657, 8301, 8971, 9667, 10389, 11137, 11911, 12711, 13537, 14389, 15267, 16171, 17101, 18057, 19039, 20047, 21081, 22141, 23227
Offset: 1
Examples
f(x) = 13 when x = 3. Hence at n = 1, f(x + f(x))/f(x) = 21 = a(1).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
LinearRecurrence[{3, -3, 1}, {21, 67, 139}, 50] (* G. C. Greubel, Apr 09 2016 *) Table[13n^2+7n+1,{n,50}] (* Harvey P. Dale, Mar 22 2019 *)
-
PARI
a(n)=13*n^2+7*n+1 \\ Charles R Greathouse IV, Jun 17 2017
Formula
From R. J. Mathar, Nov 23 2009: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(21+4*x+x^2)/(1-x)^3. (End)
E.g.f.: (13*x^2 + 20*x + 1)*exp(x). - G. C. Greubel, Apr 09 2016
Extensions
Edited, definition simplified, sequence extended beyond a(8) by R. J. Mathar, Nov 23 2009
Comments