A168258 Triangle read by rows, A101688 * A000012 as infinite lower triangular matrices.
1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 3, 3, 3, 2, 1, 3, 3, 3, 3, 2, 1, 4, 4, 4, 4, 3, 2, 1, 4, 4, 4, 4, 4, 3, 2, 1, 5, 5, 5, 5, 5, 4, 3, 2, 1, 5, 5, 5, 5, 5, 5, 4, 3, 2, 1, 6, 6, 6, 6, 6, 6, 5, 4, 3, 2, 1, 6, 6, 6, 6, 6, 6, 6, 5, 4, 3, 2, 1
Offset: 1
Examples
First few rows of the triangle: 1; 1, 1; 2, 2, 1; 2, 2, 2, 1; 3, 3, 3, 2, 1; 3, 3, 3, 3, 2, 1; 4, 4, 4, 4, 3, 2, 1; 4, 4, 4, 4, 4, 3, 2, 1; 5, 5, 5, 5, 5, 4, 3, 2, 1; 5, 5, 5, 5, 5, 5, 4, 3, 2, 1; 6, 6, 6, 6, 6, 6, 5, 4, 3, 2, 1; 6, 6, 6, 6, 6, 6, 6, 5, 4, 3, 2, 1; 7, 7, 7, 7, 7, 7, 7, 6, 5, 4, 3, 2, 1; 7, 7, 7, 7, 7, 7, 7, 7, 6, 5, 4, 3, 2, 1; 8, 8, 8, 8, 8, 8, 8, 8, 7, 6, 5, 4, 3, 2, 1; ...
Programs
-
PARI
T(n, k) = if(binomial(k, n-k)>0, 1, 0); \\ A101688 lista(nn) = my(ma=matrix(nn+1, nn, n, k, T(n-1, k-1)), mb=matrix(nn, nn, n, k, n>=k)); my(m=ma*mb, list=List()); for (n=1, nn, listput(list, vector(n, k, m[n,k]))); Vec(list); \\ Michel Marcus, Nov 16 2022
Formula
a(n) = min(A004736, A204164); a(n) = min(j, floor((t+2)/2)), where j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Apr 18 2013
Extensions
Name corrected by Gary W. Adamson, Nov 15 2022
Comments