cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168262 Intersection of A003418 and A116998.

Original entry on oeis.org

1, 2, 6, 12, 60, 420, 840, 27720, 360360, 5354228880
Offset: 1

Views

Author

Matthew Vandermast, Nov 23 2009

Keywords

Comments

If, for some prime p, A045948(p) > p^2, then all members of the sequence are less than A003418(p). (Let p_(n) be a prime for which the inequality is satisfied, and let p_(n+1) be the smallest prime > (p_(n))^2. No number smaller than A003418(p_(n+1)) can belong to this sequence. However, for any p_(n) that satisfies the inequality, so does p_(n+1), leading to an endless cycle.) This inequality is first satisfied at p=53, as A045948(53)=5040 > 53^2=2809.
Proof: It follows from the definitions of p_(n) and p_(n+1), and from Bertrand's Postulate, that 2(A045948(p_(n))) > 2((p_(n))^2) > p_(n+1). Therefore 2((A045948(p_(n)))^2 > (p_(n+1))^2.
Since any prime that divides A003418(p_(n)) divides A003418(p_(n+1)) at least twice as often, A045948(p_(n+1)) cannot be less than the product of (A045948(p_n))^2 and A034386(p_(n)). (The latter term greatly exceeds 2 for any actual p_(n).)
Therefore A045948(p_(n+1)) > 2((A045948(p_n))^2 > (p_(n+1))^2, and p_(n+1) satisfies the inequality, implying that no number smaller than A003418(p_(n+2)) can belong to this sequence.

Crossrefs

Also intersection of A003418 and A060735, and of A003418 and A168264. (A168264 is a subsequence of A060735, which is a subsequence of A116998.)
See also A001221, A168263.