A168287 T(n,k) = 2*A046802(n+1,k+1) - A007318(n,k), triangle read by rows (0 <= k <= n).
1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 26, 60, 26, 1, 1, 57, 252, 252, 57, 1, 1, 120, 931, 1746, 931, 120, 1, 1, 247, 3201, 10187, 10187, 3201, 247, 1, 1, 502, 10534, 53542, 89788, 53542, 10534, 502, 1, 1, 1013, 33698, 262466, 688976, 688976, 262466, 33698, 1013
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 4, 1; 1, 11, 11, 1; 1, 26, 60, 26, 1; 1, 57, 252, 252, 57, 1; 1, 120, 931, 1746, 931, 120, 1; 1, 247, 3201, 10187, 10187, 3201, 247, 1; 1, 502, 10534, 53542, 89788, 53542, 10534, 502, 1; ... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
Crossrefs
Programs
-
Mathematica
p[t_] = 2*(1 - x)*Exp[t]/(1 - x*Exp[t*(1 - x)]) - Exp[t*(1 + x)]; Table[CoefficientList[FullSimplify[n!*SeriesCoefficient[Series[p[t], {t, 0, n}], n]], x], {n, 0, 10}]//Flatten
-
Maxima
A046802(n, k) := sum(binomial(n - 1, r)*sum(j!*(-1)^(k - j - 1)*stirling2(r, j)*binomial(r - j, k - j - 1), j, 0, k - 1), r, k - 1, n - 1)$ T(n, k) := 2*A046802(n + 1, k + 1) - binomial(n, k)$ create_list(T(n, k), n, 0, 10, k, 0, n); /* Franck Maminirina Ramaharo, Oct 21 2018 */
Formula
E.g.f.: 2*(1 - x)*exp(t)/(1 - x*exp(t*(1 - x))) - exp(t*(1 + x)).
Extensions
Edited, and new name by Franck Maminirina Ramaharo, Oct 21 2018