cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168287 T(n,k) = 2*A046802(n+1,k+1) - A007318(n,k), triangle read by rows (0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 26, 60, 26, 1, 1, 57, 252, 252, 57, 1, 1, 120, 931, 1746, 931, 120, 1, 1, 247, 3201, 10187, 10187, 3201, 247, 1, 1, 502, 10534, 53542, 89788, 53542, 10534, 502, 1, 1, 1013, 33698, 262466, 688976, 688976, 262466, 33698, 1013
Offset: 0

Views

Author

Roger L. Bagula, Nov 22 2009

Keywords

Examples

			Triangle begins:
     1;
     1,    1;
     1,    4,     1;
     1,   11,    11,     1;
     1,   26,    60,    26,     1;
     1,   57,   252,   252,    57,     1;
     1,  120,   931,  1746,   931,   120,     1;
     1,  247,  3201, 10187, 10187,  3201,   247,   1;
     1,  502, 10534, 53542, 89788, 53542, 10534, 502, 1;
     ... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
		

Crossrefs

Triangles related to Eulerian numbers: A008292, A046802, A060187, A123125.

Programs

  • Mathematica
    p[t_] = 2*(1 - x)*Exp[t]/(1 - x*Exp[t*(1 - x)]) - Exp[t*(1 + x)];
    Table[CoefficientList[FullSimplify[n!*SeriesCoefficient[Series[p[t], {t, 0, n}], n]], x], {n, 0, 10}]//Flatten
  • Maxima
    A046802(n, k) := sum(binomial(n - 1, r)*sum(j!*(-1)^(k - j - 1)*stirling2(r, j)*binomial(r - j, k - j - 1), j, 0, k - 1), r, k - 1, n - 1)$
    T(n, k) := 2*A046802(n + 1, k + 1) - binomial(n, k)$
    create_list(T(n, k), n, 0, 10, k, 0, n);
    /* Franck Maminirina Ramaharo, Oct 21 2018 */

Formula

E.g.f.: 2*(1 - x)*exp(t)/(1 - x*exp(t*(1 - x))) - exp(t*(1 + x)).

Extensions

Edited, and new name by Franck Maminirina Ramaharo, Oct 21 2018