A168293 T(n,k) = 12*A046802(n+1,k+1) - 9*A008518(n,k) - 2*A007318(n,k), triangle read by rows (0 <= k <= n).
1, 1, 1, 1, 14, 1, 1, 33, 33, 1, 1, 64, 186, 64, 1, 1, 119, 724, 724, 119, 1, 1, 222, 2415, 5120, 2415, 222, 1, 1, 421, 7491, 28799, 28799, 7491, 421, 1, 1, 812, 22456, 142268, 257866, 142268, 22456, 812, 1, 1, 1587, 66342, 649554, 1934544, 1934544, 649554
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 14, 1; 1, 33, 33, 1; 1, 64, 186, 64, 1; 1, 119, 724, 724, 119, 1; 1, 222, 2415, 5120, 2415, 222, 1; 1, 421, 7491, 28799, 28799, 7491, 421, 1; 1, 812, 22456, 142268, 257866, 142268, 22456, 812, 1: ... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
Crossrefs
Programs
-
Maxima
A123125(n, k) := sum((-1)^(k - j)*(binomial(n - j, k - j))*stirling2(n, j)*j!, j, 0, k)$ A046802(n, k) := sum(binomial(n - 1, r)*A123125(r, k - 1), r, k - 1, n - 1)$ A008518(n, k) := A123125(n, k) + A123125(n, k + 1)$ T(n, k) := 12*A046802(n + 1, k + 1) - 9*A008518(n, k) - 2*binomial(n, k)$ create_list(T(n, k), n, 0, 10, k, 0, n); /* Franck Maminirina Ramaharo, Oct 21 2018 */
Formula
E.g.f.: 12*(1 - x)*exp(t)/(1 - x*exp(t*(1 - x))) - 9*(exp(t) - x*exp(t*x))/(exp(t*x) - x*exp(t)) - 2*exp(t*(1 + x)).
Extensions
Edited, and new name by Franck Maminirina Ramaharo, Oct 21 2018