cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168295 Triangle T(n, k) = coefficients of (p(x,n)), where p(x, n) = (n-1)! * Sum_{j=1..n} A142458(n, j)*binomial(x+j-1, n-1), read by rows.

Original entry on oeis.org

1, 1, 2, 2, 10, 10, 6, 52, 120, 80, 24, 280, 1160, 1760, 880, 120, 1520, 10000, 27200, 30800, 12320, 720, 11280, 78160, 343200, 695200, 628320, 209440, 5040, 164640, 784000, 3684800, 12073600, 19490240, 14660800, 4188800, 40320, 1438080, 15532160, 48294400, 170755200, 445688320, 598160640, 385369600, 96342400
Offset: 1

Views

Author

Roger L. Bagula, Nov 22 2009

Keywords

Examples

			Triangle begins as:
     1;
     1,      2;
     2,     10,     10;
     6,     52,    120,      80;
    24,    280,   1160,    1760,      880;
   120,   1520,  10000,   27200,    30800,    12320;
   720,  11280,  78160,  343200,   695200,   628320,   209440;
  5040, 164640, 784000, 3684800, 12073600, 19490240, 14660800, 4188800;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]];
    A142458[n_, k_]:= A142458[n, k]= T[n,k,3];
    p[x_, n_]:= p[x, n]= Sum[A142458[n,k]*Pochhammer[x+k-n+1, n-1], {k, n}];
    Table[CoefficientList[p[x, n], x], {n, 1, 12}]//Flatten (* modified by G. C. Greubel, Mar 17 2022 *)
  • Sage
    @CachedFunction
    def T(n,k,m): # A142458
        if (k==1 or k==n): return 1
        else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
    def A142458(n,k): return T(n,k,3)
    @CachedFunction
    def p(n,x): return sum( A142458(n,j)*rising_factorial(x+j-n+1, n-1) for j in (1..n))
    def A168295(n,k): return ( p(n,x) ).series(x,n+1).list()[k-1]
    flatten([[ A168295(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 17 2022

Formula

T(n, k) = coefficients of (p(x,n)), where p(x, n) = (n-1)! * Sum_{j=1..n} A142458(n, j)*binomial(x+j-1, n-1).
From G. C. Greubel, Mar 17 2022: (Start)
T(n, k) = coefficients of (p(n, x)), where p(n, x) = Sum_{j=1..n} A142458(n, j)*Pochhammer(x+j-n+1, n-1).
T(n, 1) = (n-1)!.
T(n, n) = A008544(n-1). (End)

Extensions

Edited by G. C. Greubel, Mar 17 2022