A168295 Triangle T(n, k) = coefficients of (p(x,n)), where p(x, n) = (n-1)! * Sum_{j=1..n} A142458(n, j)*binomial(x+j-1, n-1), read by rows.
1, 1, 2, 2, 10, 10, 6, 52, 120, 80, 24, 280, 1160, 1760, 880, 120, 1520, 10000, 27200, 30800, 12320, 720, 11280, 78160, 343200, 695200, 628320, 209440, 5040, 164640, 784000, 3684800, 12073600, 19490240, 14660800, 4188800, 40320, 1438080, 15532160, 48294400, 170755200, 445688320, 598160640, 385369600, 96342400
Offset: 1
Examples
Triangle begins as: 1; 1, 2; 2, 10, 10; 6, 52, 120, 80; 24, 280, 1160, 1760, 880; 120, 1520, 10000, 27200, 30800, 12320; 720, 11280, 78160, 343200, 695200, 628320, 209440; 5040, 164640, 784000, 3684800, 12073600, 19490240, 14660800, 4188800;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Mathematica
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]]; A142458[n_, k_]:= A142458[n, k]= T[n,k,3]; p[x_, n_]:= p[x, n]= Sum[A142458[n,k]*Pochhammer[x+k-n+1, n-1], {k, n}]; Table[CoefficientList[p[x, n], x], {n, 1, 12}]//Flatten (* modified by G. C. Greubel, Mar 17 2022 *)
-
Sage
@CachedFunction def T(n,k,m): # A142458 if (k==1 or k==n): return 1 else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m) def A142458(n,k): return T(n,k,3) @CachedFunction def p(n,x): return sum( A142458(n,j)*rising_factorial(x+j-n+1, n-1) for j in (1..n)) def A168295(n,k): return ( p(n,x) ).series(x,n+1).list()[k-1] flatten([[ A168295(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 17 2022
Formula
T(n, k) = coefficients of (p(x,n)), where p(x, n) = (n-1)! * Sum_{j=1..n} A142458(n, j)*binomial(x+j-1, n-1).
From G. C. Greubel, Mar 17 2022: (Start)
T(n, k) = coefficients of (p(n, x)), where p(n, x) = Sum_{j=1..n} A142458(n, j)*Pochhammer(x+j-n+1, n-1).
T(n, 1) = (n-1)!.
T(n, n) = A008544(n-1). (End)
Extensions
Edited by G. C. Greubel, Mar 17 2022