cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168303 The fifth left hand column of triangle A167552.

Original entry on oeis.org

24, 308, 2236, 11640, 47753, 163419, 485121, 1284987, 3101175, 6927921, 14502059, 28718989, 54217878, 98183330, 171418854, 289756194, 475873962, 761609034, 1190854830, 1823151902, 2738088199, 4040638965, 5867589455, 8395197525, 11848267665
Offset: 5

Views

Author

Johannes W. Meijer, Nov 23 2009

Keywords

Crossrefs

Equals the fifth left hand column of triangle A167552.
Other left hand columns are A005408, A167554, A167555 and A168302.

Programs

  • Magma
    [(642*n^9-13833*n^8+132840*n^7-726642*n^6+ 2439738*n^5-5133177*n^4+6699660*n^3-5194188*n^2+ 2157840*n- 362880)/362880: n in [5..40]]; // Vincenzo Librandi, Jul 18 2016
  • Mathematica
    LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{24, 308, 2236, 11640, 47753, 163419, 485121, 1284987, 3101175, 6927921},50] (* G. C. Greubel, Jul 17 2016 *)

Formula

a(n) = (642*n^9 - 13833*n^8 + 132840*n^7 - 726642*n^6 + 2439738*n^5 - 5133177*n^4 + 6699660*n^3 - 5194188*n^2 + 2157840*n - 362880)/9!
G.f.: (z^5 + 53*z^4 + 260*z^3 + 236*z^2 + 68*z + 24)/(1-z)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10).
a(n) - 9*a(n-1) + 36*a(n-2) - 84*a(n-3) + 126*a(n-4) - 126*a(n-5) + 84*a(n-6) - 36*a(n-7) + 9*a(n-8) - a(n-9) = 2*321.