A168304 The fifth left hand column of triangle A167565.
24, 368, 2736, 13712, 53121, 171258, 480711, 1210572, 2793219, 5996562, 12117677, 23257104, 42696758, 75408396, 128723898, 213203256, 343741122, 540958044, 832928118, 1257300704, 1863880095, 2717733590, 3902905305, 5526820260, 7725470805
Offset: 5
Links
- G. C. Greubel, Table of n, a(n) for n = 5..1000
- Index entries for linear recurrences with constant coefficients, signature (10, -45, 120, -210, 252, -210, 120, -45, 10, -1).
Crossrefs
Programs
-
Magma
[(321*n^9-4500*n^8+25506*n^7-75096*n^6+121905*n^5- 104580*n^4+2736*n^2+37164*n^3-3456*n)/362880: n in [5..40]]; // Vincenzo Librandi, Jul 18 2016
-
Mathematica
LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{24, 368, 2736, 13712, 53121, 171258, 480711, 1210572, 2793219, 5996562},50] (* G. C. Greubel, Jul 17 2016 *)
Formula
a(n) = (321*n^9 - 4500*n^8 + 25506*n^7 - 75096*n^6 + 121905*n^5 - 104580*n^4 + 2736*n^2 + 37164*n^3 - 3456*n)/9!.
G.f.: (z^4 + 32*z^3 + 136*z^2 + 128*z + 24)/(1-z)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10).
a(n) - 9*a(n-1) + 36*a(n-2) - 84*a(n-3) + 126*a(n-4) - 126*a(n-5) + 84*a(n-6) - 36*a(n-7) + 9*a(n-8) - a(n-9) = 321.