cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168344 G.f. A(x) satisfies: A(x) = G(x*A(x)) where A(x/G(x)) = G(x) = g.f. of A006664, which is the number of irreducible systems of meanders.

Original entry on oeis.org

1, 1, 3, 15, 99, 773, 6743, 63591, 635307, 6634599, 71759983, 798563065, 9098321475, 105733563393, 1249676348391, 14986826364311, 182027688352427, 2235713532561779, 27732857308708571, 347064951865766607
Offset: 0

Views

Author

Paul D. Hanna, Nov 23 2009

Keywords

Comments

Number of b^* n-strand braids of length at most 2, see the Biane/Dehornoy reference. - Joerg Arndt, Jul 08 2014

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 15*x^3 + 99*x^4 + 773*x^5 + 6743*x^6 +...
A(x) satisfies: A(x*F(x)) = F(x) = g.f. of A001246:
F(x) = 1 + x + 4*x^2 + 25*x^3 + 196*x^4 + 1764*x^5 + 17424*x^6 +...+ A000108(n)^2*x^n +...
A(x) satisfies: A(x/G(x)) = G(x) = g.f. of A006664:
G(x) = 1 + x + 2*x^2 + 8*x^3 + 46*x^4 + 322*x^5 + 2546*x^6 +...
		

Crossrefs

Cf. A168450 (variant). [From Paul D. Hanna, Nov 29 2009]

Programs

  • Mathematica
    F[x_] = (Hypergeometric2F1[-1/2, -1/2, 1, 16x] - 1)/(4x);
    A[x_] = x/InverseSeries[x F[x] + O[x]^21, x];
    CoefficientList[A[x], x] (* Jean-François Alcover, Jul 21 2018, from 2nd formula *)
  • PARI
    {a(n)=local(C_2=vector(n+1,m,(binomial(2*m-2,m-1)/m)^2));polcoeff(x/serreverse(x*Ser(C_2)),n)}

Formula

G.f.: A(x) = F(x/A(x)) where A(x*F(x)) = F(x) = g.f. of A001246, which is the squares of Catalan numbers.
G.f.: A(x) = x/Series_Reversion(x*F(x)) where F(x) = g.f. of A001246.
G.f.: A(x) = (1/x)*Series_Reversion(x/G(x)) where G(x) = g.f. of A006664.

Extensions

Typo in formula corrected by Paul D. Hanna, Nov 24 2009