A248382
Number of n-strand braids of length at most 2 in the dual monoid B_n^{+*}.
Original entry on oeis.org
1, 4, 83, 556, 11124, 266944
Offset: 1
A248386
Number of n-strand braids of length at most 6 in the dual monoid B_n^{+*}.
Original entry on oeis.org
1, 8, 1515, 334632
Offset: 1
A168450
G.f. A(x) satisfies: A(x) = G(x*A(x)) where A(x/G(x)) = G(x) = g.f. of A004304, where A004304(n) is the number of planar tree-rooted maps with n edges.
Original entry on oeis.org
1, 2, 6, 26, 148, 1012, 7824, 65886, 590452, 5546972, 54070432, 542937320, 5586265280, 58659600352, 626702981084, 6795682231830, 74645847739012, 829257675740724, 9304974123394272, 105343378754088424
Offset: 0
G.f. A(x) = 1 + 2*x + 6*x^2 + 26*x^3 + 148*x^4 + 1012*x^5 + 7824*x^6 +...
A(x) satisfies: A(x*F(x)) = F(x) = g.f. of A005568:
F(x) = 1 + 2*x + 10*x^2 + 70*x^3 + 588*x^4 + 5544*x^5 + 56628*x^6 +...+ A000108(n)*A000108(n+1)*x^n +...
A(x) satisfies: A(x/G(x)) = G(x) = g.f. of A004304:
G(x) = 1 + 2*x + 2*x^2 + 6*x^3 + 28*x^4 + 160*x^5 + 1036*x^6 +...
-
{a(n)=local(C_2=vector(n+1,m,(binomial(2*m-2,m-1)/m)*(binomial(2*m,m)/(m+1))));polcoeff((x/serreverse(x*Ser(C_2))),n)}
A168357
Self-convolution of A006664, which is the number of irreducible systems of meanders.
Original entry on oeis.org
1, 2, 5, 20, 112, 768, 5984, 50856, 460180, 4366076, 42988488, 436066232, 4532973676, 48095557700, 519247705968, 5690272928520, 63172884082028, 709373555125356, 8046263496489260, 92089662771965492, 1062482514810065752
Offset: 0
G.f.: A(x) = 1 + 2*x + 5*x^2 + 20*x^3 + 112*x^4 + 768*x^5 +...
A(x)^(1/2) = 1 + x + 2*x^2 + 8*x^3 + 46*x^4 + 322*x^5 + 2546*x^6 +...+ A006664(n)*x^n +...
G.f. satisfies: A(x*F(x)^2) = F(x)^2 where F(x) = g.f. of A001246:
F(x) = 1 + x + 4*x^2 + 25*x^3 + 196*x^4 + 1764*x^5 + 17424*x^6 +...+ A000108(n)^2*x^n +...
F(x)^2 = 1 + 2*x + 9*x^2 + 58*x^3 + 458*x^4 + 4120*x^5 + 40569*x^6 +...+ A168358(n)*x^n +...
-
{a(n)=local(C_2=vector(n+1, m, (binomial(2*m-2, m-1)/m)^2)); polcoeff(x/serreverse(x*Ser(C_2)^2), n)}
A168358
Self-convolution square of A001246, which is the squares of Catalan numbers.
Original entry on oeis.org
1, 2, 9, 58, 458, 4120, 40569, 426842, 4723890, 54402904, 646992474, 7900772120, 98642862232, 1254984808672, 16227116787737, 212790354730842, 2824992774357362, 37915366854924952, 513837166842215970
Offset: 0
G.f.: A(x) = 1 + 2*x + 9*x^2 + 58*x^3 + 458*x^4 + 4120*x^5 +...
A(x)^(1/2) = 1 + x + 4*x^2 + 25*x^3 + 196*x^4 + 1764*x^5 + 17424*x^6 +...+ A001246(n)*x^n +...
A(x) satisfies: A(x/G(x)^2) = G(x)^2 where G(x) = g.f. of A006664:
G(x) = 1 + x + 2*x^2 + 8*x^3 + 46*x^4 + 322*x^5 + 2546*x^6 +...+ A006664(n)*x^n +...
G(x)^2 = 1 + 2*x + 5*x^2 + 20*x^3 + 112*x^4 + 768*x^5 + 5984*x^6 +...+ A168357(n)*x^n +...
-
Table[Sum[CatalanNumber[k]^2 * CatalanNumber[n-k]^2, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 10 2018 *)
-
{a(n)=local(C_2=vector(n+1, m, (binomial(2*m-2, m-1)/m)^2)); polcoeff(Ser(C_2)^2, n)}
A168594
G.f. A(x) satisfies: A(x) = F(x/A(x)) where A(x*F(x)) = F(x) = g.f. of A133053, which is the squares of Motzkin numbers (A001006).
Original entry on oeis.org
1, 1, 3, 6, 20, 70, 302, 1386, 6902, 35862, 194202, 1082642, 6191680, 36141118, 214715244, 1294849186, 7911159522, 48888093910, 305165808290, 1921992409066, 12202404037088, 78031629139246, 502263432618224, 3252160882871210
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 6*x^3 + 20*x^4 + 70*x^5 + 302*x^6 +...
A(x) satisfies: A(x*F(x)) = F(x) = g.f. of A133053:
F(x) = 1 + x + 4*x^2 + 16*x^3 + 81*x^4 + 441*x^5 + 2601*x^6 +...+ A001006(n)^2*x^n +...
-
{a(n)=if(n==0,1,polcoeff(x/serreverse(x*sum(m=0,n,polcoeff((1/x)*serreverse(x/(1+x+x^2+x^2*O(x^m))), m)^2 *x^m)+x^2*O(x^n)),n))}
A248383
Number of n-strand braids of length at most 3 in the dual monoid B_n^{+*}.
Original entry on oeis.org
1, 5, 177, 2856, 147855, 9845829
Offset: 1
A248384
Number of n-strand braids of length at most 4 in the dual monoid B_n^{+*}.
Original entry on oeis.org
1, 6, 367, 14122, 1917046, 356470124
Offset: 1
A248385
Number of n-strand braids of length at most 5 in the dual monoid B_n^{+*}.
Original entry on oeis.org
1, 7, 749, 68927, 24672817
Offset: 1
Showing 1-9 of 9 results.