cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A168452 Self-convolution of A005568, where A005568(n) is the product of two successive Catalan numbers C(n)*C(n+1).

Original entry on oeis.org

1, 4, 24, 180, 1556, 14840, 152092, 1646652, 18613664, 217852008, 2623657384, 32361812912, 407342311632, 5217211974832, 67836910362772, 893766246630572, 11913422912188432, 160450066324972472, 2181014117345997704, 29894260817385950064, 412839378639052110464
Offset: 0

Views

Author

Paul D. Hanna, Nov 26 2009

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 24*x^2 + 180*x^3 + 1556*x^4 + 14840*x^5 +...
A(x)^(1/2) = 1 + 2*x + 10*x^2 + 70*x^3 + 588*x^4 + 5544*x^5 + 56628*x^6 +...+ A005568(n)*x^n +...
A(x) satisfies: A(x/G(x)^2) = G(x)^2 where G(x) = g.f. of A004304:
G(x) = 1 + 2*x + 2*x^2 + 6*x^3 + 28*x^4 + 160*x^5 + 1036*x^6 +...+ A004304(n)*x^n +...
G(x)^2 = 1 + 4*x + 8*x^2 + 20*x^3 + 84*x^4 + 456*x^5 + 2860*x^6 +...+ A168451(n)*x^n +...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 4, 24][n+1],
          (12*n*(n+1)*(16*n^4+68*n^3+44*n^2-63*n-25) *a(n-1)
           -(3072*n^6+768*n^5-8448*n^4+1152*n^3+3264*n^2-288) *a(n-2)
           +1024*n*(n-1)*(n-2)*(2*n-1)*(2*n-3)*(4*n+1) *a(n-3)) /
          ((n+1)^2*(n+2)*(n+3)*(n+4)*(4*n-3)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 20 2013
  • Mathematica
    c[n_] := CatalanNumber[n]*CatalanNumber[n+1]; a[n_] := ListConvolve[cc = Array[c, n+1, 0], cc][[1]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 22 2017 *)
  • PARI
    {a(n)=local(C_2=vector(n+1,m,(binomial(2*m-2,m-1)/m)*(binomial(2*m,m)/(m+1))));polcoeff(Ser(C_2)^2,n)}

Formula

G.f.: A(x) = (1/x)*Series_Reversion(x/G(x)^2) where G(x) = g.f. of A004304, where A004304(n) is the number of planar tree-rooted maps with n edges.
G.f.: A(x) = G(x*A(x))^2 where A(x/G(x)^2) = G(x)^2 where G(x) = g.f. of A004304.
a(n) ~ c * 16^n / n^3, where c = 3.07968404... . - Vaclav Kotesovec, Sep 12 2014
Conjecture D-finite with recurrence 3*(n+4)*(n+3)*(n+2)*(n+1)^2*a(n) -4*n*(n+1) *(32*n^3+164*n^2+233*n+75)*a(n-1) +96*(16*n^5+24*n^4-14*n^3-28*n^2-16*n+3) *a(n-2) +1536*(-8*n^4+22*n^3-32*n+15)*a(n-3) -16384*(2*n-5)*(n-1)*(n-2)*(n-3)*(2*n-3)*a(n-4)=0. - R. J. Mathar, Nov 22 2024

Extensions

Typo in formula corrected by Paul D. Hanna, Nov 28 2009

A168357 Self-convolution of A006664, which is the number of irreducible systems of meanders.

Original entry on oeis.org

1, 2, 5, 20, 112, 768, 5984, 50856, 460180, 4366076, 42988488, 436066232, 4532973676, 48095557700, 519247705968, 5690272928520, 63172884082028, 709373555125356, 8046263496489260, 92089662771965492, 1062482514810065752
Offset: 0

Views

Author

Paul D. Hanna, Nov 23 2009

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 20*x^3 + 112*x^4 + 768*x^5 +...
A(x)^(1/2) = 1 + x + 2*x^2 + 8*x^3 + 46*x^4 + 322*x^5 + 2546*x^6 +...+ A006664(n)*x^n +...
G.f. satisfies: A(x*F(x)^2) = F(x)^2 where F(x) = g.f. of A001246:
F(x) = 1 + x + 4*x^2 + 25*x^3 + 196*x^4 + 1764*x^5 + 17424*x^6 +...+ A000108(n)^2*x^n +...
F(x)^2 = 1 + 2*x + 9*x^2 + 58*x^3 + 458*x^4 + 4120*x^5 + 40569*x^6 +...+ A168358(n)*x^n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(C_2=vector(n+1, m, (binomial(2*m-2, m-1)/m)^2)); polcoeff(x/serreverse(x*Ser(C_2)^2), n)}

Formula

G.f.: A(x) = x/Series_Reversion(x*F(x)^2) where F(x) = g.f. of A001246, which is the squares of Catalan numbers.
G.f.: A(x) = F(x/A(x))^2 where A(x*F(x)^2) = F(x)^2 where F(x) = g.f. of A001246.
Showing 1-2 of 2 results.