cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A168451 Self-convolution of A004304, where A004304(n) is the number of planar tree-rooted maps with n edges.

Original entry on oeis.org

1, 4, 8, 20, 84, 456, 2860, 19708, 145120, 1122680, 9023784, 74777248, 635292016, 5510485600, 48644137764, 435920025116, 3957758805776, 36345636909032, 337159090063880, 3155827384249824, 29776934546342464, 283001546964599248
Offset: 0

Views

Author

Paul D. Hanna, Nov 26 2009

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 8*x^2 + 20*x^3 + 84*x^4 + 456*x^5 + 2860*x^6 +...
A(x)^(1/2) = 1 + 2*x + 2*x^2 + 6*x^3 + 28*x^4 + 160*x^5 + 1036*x^6 +...+ A004304(n)*x^n +...
G.f. satisfies: A(x*F(x)^2) = F(x)^2 where F(x) = g.f. of A005568:
F(x) = 1 + 2*x + 10*x^2 + 70*x^3 + 588*x^4 + 5544*x^5 + 56628*x^6 +...+ A000108(n)*A000108(n+1)*x^n +...
F(x)^2 = 1 + 4*x + 24*x^2 + 180*x^3 + 1556*x^4 + 14840*x^5 + 152092*x^6 +...+ A168452(n)*x^n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(C_2=vector(n+1,m,(binomial(2*m-2,m-1)/m)*(binomial(2*m,m)/(m+1))));polcoeff((x/serreverse(x*Ser(C_2)^2)),n)}

Formula

G.f.: A(x) = x/Series_Reversion(x*F(x)^2) where F(x) = g.f. of A005568, where A005568(n) is the product of two successive Catalan numbers C(n)*C(n+1).
G.f.: A(x) = F(x/A(x))^2 where A(x*F(x)^2) = F(x)^2 where F(x) = g.f. of A005568.

A168358 Self-convolution square of A001246, which is the squares of Catalan numbers.

Original entry on oeis.org

1, 2, 9, 58, 458, 4120, 40569, 426842, 4723890, 54402904, 646992474, 7900772120, 98642862232, 1254984808672, 16227116787737, 212790354730842, 2824992774357362, 37915366854924952, 513837166842215970
Offset: 0

Views

Author

Paul D. Hanna, Nov 23 2009

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 9*x^2 + 58*x^3 + 458*x^4 + 4120*x^5 +...
A(x)^(1/2) = 1 + x + 4*x^2 + 25*x^3 + 196*x^4 + 1764*x^5 + 17424*x^6 +...+ A001246(n)*x^n +...
A(x) satisfies: A(x/G(x)^2) = G(x)^2 where G(x) = g.f. of A006664:
G(x) = 1 + x + 2*x^2 + 8*x^3 + 46*x^4 + 322*x^5 + 2546*x^6 +...+ A006664(n)*x^n +...
G(x)^2 = 1 + 2*x + 5*x^2 + 20*x^3 + 112*x^4 + 768*x^5 + 5984*x^6 +...+ A168357(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[CatalanNumber[k]^2 * CatalanNumber[n-k]^2, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 10 2018 *)
  • PARI
    {a(n)=local(C_2=vector(n+1, m, (binomial(2*m-2, m-1)/m)^2)); polcoeff(Ser(C_2)^2, n)}

Formula

G.f.: A(x) = (1/x)*Series_Reversion(x/G(x)^2) where G(x) = g.f. of A006664, which is the number of irreducible systems of meanders.
G.f.: A(x) = G(x*A(x))^2 where A(x/G(x)^2) = G(x)^2 where G(x) = g.f. of A006664.
From Vaclav Kotesovec, Mar 10 2018: (Start)
Recurrence: (n+1)^2*(n+2)^3*(4*n^2 - 5*n - 3)*a(n) = 4*(n+1)^2*(48*n^5 - 12*n^4 - 136*n^3 + 15*n^2 + 49*n - 30)*a(n-1) - 32*(96*n^7 - 312*n^6 + 104*n^5 + 580*n^4 - 630*n^3 + 80*n^2 + 91*n - 12)*a(n-2) + 1024*(n-2)^3*(2*n - 3)^2*(4*n^2 + 3*n - 4)*a(n-3).
a(n) ~ (4/Pi - 1) * 2^(4*n + 3) / (Pi*n^3). (End)

A172391 G.f. satisfies: A(x) = G(x/A(x))^2 and G(x)^2 = A(x*G(x)^2) where G(x) = Sum_{n>=0} C(2*n,n)*C(2*n+2,n+1)/(n+2)*x^n is the g.f. of A172392.

Original entry on oeis.org

1, 8, 12, 0, 28, 0, 264, 0, 3720, 0, 63840, 0, 1232432, 0, 25731216, 0, 568130552, 0, 13081215840, 0, 311178567648, 0, 7597974517056, 0, 189518147463232, 0, 4811962763222784, 0, 124028853694440640, 0, 3238304402221646880, 0
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2010

Keywords

Examples

			G.f.: A(x) = 1 + 8*x + 12*x^2 + 28*x^4 + 264*x^6 + 3720*x^8 +...
where A(x) = G(x/A(x))^2 where G(x) is the g.f. of A172392:
G(x) = 1 + 4*x + 30*x^2 + 280*x^3 + 2940*x^4 + 33264*x^5 +...+ A172392(n)*x^n +...
G(x) = 1 + 2*2*x + 5*6*x^2 + 14*20*x^3 + 42*70*x^4 + 132*252*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(G=sum(m=0,n,binomial(2*m,m)*binomial(2*m+2,m+1)/(m+2)*x^m)+x*O(x^n));polcoeff(x/serreverse(x*G^2),n)}

Formula

G.f.: A(x) = x/Series_Reversion(x*G(x)^2) where G(x) is the g.f. of A172392(n) = A000108(n+1)*A000984(n).
Self-convolution of A172393.
Showing 1-3 of 3 results.