cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168357 Self-convolution of A006664, which is the number of irreducible systems of meanders.

Original entry on oeis.org

1, 2, 5, 20, 112, 768, 5984, 50856, 460180, 4366076, 42988488, 436066232, 4532973676, 48095557700, 519247705968, 5690272928520, 63172884082028, 709373555125356, 8046263496489260, 92089662771965492, 1062482514810065752
Offset: 0

Views

Author

Paul D. Hanna, Nov 23 2009

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 20*x^3 + 112*x^4 + 768*x^5 +...
A(x)^(1/2) = 1 + x + 2*x^2 + 8*x^3 + 46*x^4 + 322*x^5 + 2546*x^6 +...+ A006664(n)*x^n +...
G.f. satisfies: A(x*F(x)^2) = F(x)^2 where F(x) = g.f. of A001246:
F(x) = 1 + x + 4*x^2 + 25*x^3 + 196*x^4 + 1764*x^5 + 17424*x^6 +...+ A000108(n)^2*x^n +...
F(x)^2 = 1 + 2*x + 9*x^2 + 58*x^3 + 458*x^4 + 4120*x^5 + 40569*x^6 +...+ A168358(n)*x^n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(C_2=vector(n+1, m, (binomial(2*m-2, m-1)/m)^2)); polcoeff(x/serreverse(x*Ser(C_2)^2), n)}

Formula

G.f.: A(x) = x/Series_Reversion(x*F(x)^2) where F(x) = g.f. of A001246, which is the squares of Catalan numbers.
G.f.: A(x) = F(x/A(x))^2 where A(x*F(x)^2) = F(x)^2 where F(x) = g.f. of A001246.