cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168445 Number of compositions a(1),...,a(k) of n, for some k, such that a(i+1) <= a(i) + 1 for 1 <= i < k and a(1) <= a(k) + 1.

Original entry on oeis.org

1, 2, 4, 6, 11, 18, 31, 52, 91, 155, 268, 464, 802, 1390, 2411, 4178, 7249, 12578, 21823, 37870, 65724, 114061, 197960, 343578, 596317, 1034983, 1796359, 3117837, 5411478, 9392460, 16302081, 28294850, 49110242, 85238716, 147945552, 256783448, 445689300
Offset: 1

Views

Author

Vladeta Jovovic, Nov 25 2009

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 381.

Crossrefs

Programs

  • Maple
    b:= proc(n,r,f) option remember; `if`(n=0, `if`(f-1<=r, 1, 0),
          add(b(n-i, i, f), i=1..min(r+1, n)))
        end:
    a:= n-> add(b(n-i, i, i), i=1..n):
    seq(a(n), n=1..40);  # Alois P. Heinz, Dec 15 2009
  • Mathematica
    b[n_, r_, f_] := b[n, r, f] = If[n == 0, If[f - 1 <= r, 1, 0], Sum[b[n - i, i, f], {i, 1, Min [r + 1, n]}]];
    a[n_] := Sum[b[n - i, i, i], {i, 1, n}];
    Array[a, 40] (* Jean-François Alcover, Nov 10 2020, after Alois P. Heinz *)

Formula

a(n) ~ c / r^n, where r = A347901 = 0.576148769142756602297868573719938782354724663118974... is the lowest root of the equation Sum_{k>=0} (-1)^k * r^(k^2) / QPochhammer(r, r, k) = 0 and c = 0.6149126319329581124890112676009720339906790088212712130894... - Vaclav Kotesovec, May 01 2014, updated Sep 09 2020

Extensions

More terms from Alois P. Heinz, Dec 15 2009