A168516 Table of the numerators of the fractions of Bernoulli twin numbers and their higher-order differences, read by antidiagonals.
-1, 1, -1, -1, 2, -1, -1, -1, 1, 1, 1, -1, -8, -1, 1, 1, 1, 4, -4, -1, -1, -1, -1, 4, 8, 4, -1, -1, -1, -1, -8, -4, 4, 8, 1, 1, 5, 7, -4, -116, -32, -116, -4, 7, 5, 5, 5, 32, 28, 16, -16, -28, -32, -5, -5, -691, -2663, -388, 2524, 5072, 6112, 5072, 2524, -388, -2663, -691, -691, -691, -10264, -10652, -8128, -3056, 3056, 8128, 10652, 10264, 691, 691, 7, 1247, 556, -4148, -2960, -22928
Offset: 0
Programs
-
Maple
C := proc(n) if n=0 then 1; elif n mod 2 = 0 then bernoulli(n)+bernoulli(n-1); else -bernoulli(n)-bernoulli(n-1); end if; end proc: A168516 := proc(n,k) L := [seq(C(i),i=0..n+k+3)] ; for c from 1 to n do L := DIFF(L) ; end do; numer(op(k+3,L)) ; end proc: for d from 0 to 15 do for k from 0 to d do printf("%a,",A168516(d-k,k)) ; end do: end do: # R. J. Mathar, Jul 10 2011
-
Mathematica
max = 13; c[0] = 1; c[n_?EvenQ] := BernoulliB[n] + BernoulliB[n-1]; c[n_?OddQ] := -BernoulliB[n] - BernoulliB[n-1]; cc = Table[c[n], {n, 0, max+1}]; diff = Drop[#, 2]& /@ Table[ Differences[cc, n], {n, 0, max-1}]; Flatten[ Table[ diff[[n-k+1, k]], {n, 1, max}, {k, 1, n}]] // Numerator (* Jean-François Alcover, Aug 09 2012 *)
Extensions
Edited and extended by R. J. Mathar, Jul 10 2011
Comments